CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
LA-Net: layer attention network for 3D-to-2D retinal vessel segmentation in OCTA images
Yang, Chaozhi1; Li, Bei2; Xiao, Qian1; Bai, Yun1; Li, Yachuan1; Li, Zongmin1; Li, Hongyi2; Li, Hua3
2024-02-21
发表期刊PHYSICS IN MEDICINE AND BIOLOGY
ISSN0031-9155
卷号69期号:4页码:15
摘要Objective. Retinal vessel segmentation from optical coherence tomography angiography (OCTA) volumes is significant in analyzing blood supply structures and the diagnosing ophthalmic diseases. However, accurate retinal vessel segmentation in 3D OCTA remains challenging due to the interference of choroidal blood flow signals and the variations in retinal vessel structure. Approach. This paper proposes a layer attention network (LA-Net) for 3D-to-2D retinal vessel segmentation. The network comprises a 3D projection path and a 2D segmentation path. The key component in the 3D path is the proposed multi-scale layer attention module, which effectively learns the layer features of OCT and OCTA to attend to the retinal vessel layer while suppressing the choroidal vessel layer. This module also efficiently captures 3D multi-scale information for improved semantic understanding during projection. In the 2D path, a reverse boundary attention module is introduced to explore and preserve boundary and shape features of retinal vessels by focusing on non-salient regions in deep features. Main results. Experimental results in two subsets of the OCTA-500 dataset showed that our method achieves advanced segmentation performance with Dice similarity coefficients of 93.04% and 89.74%, respectively. Significance. The proposed network provides reliable 3D-to-2D segmentation of retinal vessels, with potential for application in various segmentation tasks that involve projecting the input image. Implementation code: https://github.com/y8421036/LA-Net.
关键词retinal vessel segmentation 3D-to-2D multi-scale layer attention reverse boundary attention OCTA volume
DOI10.1088/1361-6560/ad2011
收录类别SCI
语种英语
资助项目General Research Projects of Beijing Educations Committee in China ; National Key R&D Program of China[2019YFF0301800] ; National Natural Science Foundation of China[61379106] ; National Natural Science Foundation of China[61806199] ; Shandong Provincial Natural Science Foundation[ZR2015FM011] ; [KM201910005013]
WOS研究方向Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001159796700001
出版者IOP Publishing Ltd
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38354
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Zongmin
作者单位1.China Univ Petr East China, Coll Comp Sci & Technol, Qingdao 266580, Peoples R China
2.Chinese Acad Med Sci, Beijing Hosp, Inst Geriatr Med, Beijing 100730, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yang, Chaozhi,Li, Bei,Xiao, Qian,et al. LA-Net: layer attention network for 3D-to-2D retinal vessel segmentation in OCTA images[J]. PHYSICS IN MEDICINE AND BIOLOGY,2024,69(4):15.
APA Yang, Chaozhi.,Li, Bei.,Xiao, Qian.,Bai, Yun.,Li, Yachuan.,...&Li, Hua.(2024).LA-Net: layer attention network for 3D-to-2D retinal vessel segmentation in OCTA images.PHYSICS IN MEDICINE AND BIOLOGY,69(4),15.
MLA Yang, Chaozhi,et al."LA-Net: layer attention network for 3D-to-2D retinal vessel segmentation in OCTA images".PHYSICS IN MEDICINE AND BIOLOGY 69.4(2024):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Chaozhi]的文章
[Li, Bei]的文章
[Xiao, Qian]的文章
百度学术
百度学术中相似的文章
[Yang, Chaozhi]的文章
[Li, Bei]的文章
[Xiao, Qian]的文章
必应学术
必应学术中相似的文章
[Yang, Chaozhi]的文章
[Li, Bei]的文章
[Xiao, Qian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。