CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining
Zhuang, Yi-Min1,2; Hu, Xing1; Chen, Xiao-Bing1,2; Zhi, Tian1
2023-07-01
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
卷号38期号:4页码:899-910
摘要Dynamic neural network (NN) techniques are increasingly important because they facilitate deep learning techniques with more complex network architectures. However, existing studies, which predominantly optimize the static computational graphs by static scheduling methods, usually focus on optimizing static neural networks in deep neural network (DNN) accelerators. We analyze the execution process of dynamic neural networks and observe that dynamic features introduce challenges for efficient scheduling and pipelining in existing DNN accelerators. We propose DyPipe, a holistic approach to optimizing dynamic neural network inferences in enhanced DNN accelerators. DyPipe achieves significant performance improvements for dynamic neural networks while it introduces negligible overhead for static neural networks. Our evaluation demonstrates that DyPipe achieves 1.7x speedup on dynamic neural networks and maintains more than 96% performance for static neural networks.
关键词dynamic neural network (NN) deep neural network (DNN) accelerator dynamic pipelining
DOI10.1007/s11390-021-1161-y
收录类别SCI
语种英语
资助项目Beijing Natural Science Foundation[JQ18013] ; National Natural Science Foundation of China[61925208] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61732002] ; National Natural Science Foundation of China[61906179] ; Strategic Priority Research Program of Chinese Academy of Sciences (CAS)[XDB32050200] ; Youth Innovation Promotion Association CAS ; Beijing Academy of Artificial Intelligence (BAAI) ; Xplore Prize
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:001102032000012
出版者SPRINGER SINGAPORE PTE LTD
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38066
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhi, Tian
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhuang, Yi-Min,Hu, Xing,Chen, Xiao-Bing,et al. DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2023,38(4):899-910.
APA Zhuang, Yi-Min,Hu, Xing,Chen, Xiao-Bing,&Zhi, Tian.(2023).DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,38(4),899-910.
MLA Zhuang, Yi-Min,et al."DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38.4(2023):899-910.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhuang, Yi-Min]的文章
[Hu, Xing]的文章
[Chen, Xiao-Bing]的文章
百度学术
百度学术中相似的文章
[Zhuang, Yi-Min]的文章
[Hu, Xing]的文章
[Chen, Xiao-Bing]的文章
必应学术
必应学术中相似的文章
[Zhuang, Yi-Min]的文章
[Hu, Xing]的文章
[Chen, Xiao-Bing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。