Institute of Computing Technology, Chinese Academy IR
DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining | |
Zhuang, Yi-Min1,2; Hu, Xing1; Chen, Xiao-Bing1,2; Zhi, Tian1 | |
2023-07-01 | |
发表期刊 | JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY |
ISSN | 1000-9000 |
卷号 | 38期号:4页码:899-910 |
摘要 | Dynamic neural network (NN) techniques are increasingly important because they facilitate deep learning techniques with more complex network architectures. However, existing studies, which predominantly optimize the static computational graphs by static scheduling methods, usually focus on optimizing static neural networks in deep neural network (DNN) accelerators. We analyze the execution process of dynamic neural networks and observe that dynamic features introduce challenges for efficient scheduling and pipelining in existing DNN accelerators. We propose DyPipe, a holistic approach to optimizing dynamic neural network inferences in enhanced DNN accelerators. DyPipe achieves significant performance improvements for dynamic neural networks while it introduces negligible overhead for static neural networks. Our evaluation demonstrates that DyPipe achieves 1.7x speedup on dynamic neural networks and maintains more than 96% performance for static neural networks. |
关键词 | dynamic neural network (NN) deep neural network (DNN) accelerator dynamic pipelining |
DOI | 10.1007/s11390-021-1161-y |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Beijing Natural Science Foundation[JQ18013] ; National Natural Science Foundation of China[61925208] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61732002] ; National Natural Science Foundation of China[61906179] ; Strategic Priority Research Program of Chinese Academy of Sciences (CAS)[XDB32050200] ; Youth Innovation Promotion Association CAS ; Beijing Academy of Artificial Intelligence (BAAI) ; Xplore Prize |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Software Engineering |
WOS记录号 | WOS:001102032000012 |
出版者 | SPRINGER SINGAPORE PTE LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/38066 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Zhi, Tian |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhuang, Yi-Min,Hu, Xing,Chen, Xiao-Bing,et al. DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2023,38(4):899-910. |
APA | Zhuang, Yi-Min,Hu, Xing,Chen, Xiao-Bing,&Zhi, Tian.(2023).DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,38(4),899-910. |
MLA | Zhuang, Yi-Min,et al."DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38.4(2023):899-910. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论