Institute of Computing Technology, Chinese Academy IR
Geometry-Aware Similarity Learning on SPD Manifolds for Visual Recognition | |
Huang, Zhiwu1,2; Wang, Ruiping1; Li, Xianqiu1; Liu, Wenxian1; Shan, Shiguang1; Van Gool, Luc2; Chen, Xilin1 | |
2018-10-01 | |
发表期刊 | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY |
ISSN | 1051-8215 |
卷号 | 28期号:10页码:2513-2523 |
摘要 | Symmetric positive definite (SPD) matrices have been employed for data representation in many visual recognition tasks. The success is mainly attributed to learning discriminative SPD matrices encoding the Riemannian geometry of the underlying SPD manifolds. In this paper, we propose a geometry-aware SPD similarity learning (SPDSL) framework to learn discriminative SPD features by directly pursuing a manifold-manifold transformation matrix of full column rank. Specifically, by exploiting the Riemannian geometry of the manifolds of fixed-rank positive semidefinite (PSD) matrices, we present a new solution to reduce optimization over the space of column full-rank transformation matrices to optimization on the PSD manifold, which has a well-established Riemannian structure. Under this solution, we exploit a new supervised SPDSL technique to learn the manifold-manifold transformation by regressing the similarities of selected SPD data pairs to their ground-truth similarities on the target SPD manifold. To optimize the proposed objective function, we further derive an optimization algorithm on the PSD manifold. Evaluations on three visual classification tasks show the advantages of the proposed approach over the existing SPD-based discriminant learning methods. |
关键词 | Discriminative SPD matrices Riemannian geometry SPD manifold geometry-aware SPD similarity learning PSD manifold |
DOI | 10.1109/TCSVT.2017.2729660 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Natural Science Foundation of China[61390511] ; Natural Science Foundation of China[61379083] ; Natural Science Foundation of China[61650202] ; 973 Program[2015CB351802] ; Youth Innovation Promotion Association CAS[2015085] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic |
WOS记录号 | WOS:000448517900007 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/3642 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Wang, Ruiping |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 2.ETH, Swiss Fed Inst Technol, Comp Vis Lab, CH-8092 Zurich, Switzerland |
推荐引用方式 GB/T 7714 | Huang, Zhiwu,Wang, Ruiping,Li, Xianqiu,et al. Geometry-Aware Similarity Learning on SPD Manifolds for Visual Recognition[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2018,28(10):2513-2523. |
APA | Huang, Zhiwu.,Wang, Ruiping.,Li, Xianqiu.,Liu, Wenxian.,Shan, Shiguang.,...&Chen, Xilin.(2018).Geometry-Aware Similarity Learning on SPD Manifolds for Visual Recognition.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,28(10),2513-2523. |
MLA | Huang, Zhiwu,et al."Geometry-Aware Similarity Learning on SPD Manifolds for Visual Recognition".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 28.10(2018):2513-2523. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论