CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning Effective RGB-D Representations for Scene Recognition
Song, Xinhang1,2; Jiang, Shuqiang1,2; Herranz, Luis3; Chen, Chengpeng1,2
2019-02-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号28期号:2页码:980-993
摘要Deep convolutional networks can achieve impressive results on RGB scene recognition thanks to large data sets such as places. In contrast, RGB-D scene recognition is still underdeveloped in comparison, due to two limitations of RGB-D data we address in this paper. The first limitation is the lack of depth data for training deep learning models. Rather than fine tuning or transferring RGB-specific features, we address this limitation by proposing an architecture and a two-step training approach that directly learns effective depth-specific features using weak supervision via patches. The resulting RGB-D model also benefits from more complementary multimodal features. Another limitation is the short range of depth sensors (typically 0.5 m to 5.5 m), resulting in depth images not capturing distant objects in the scenes that RGB images can. We show that this limitation can he addressed by using RGB-D videos, where more comprehensive depth information is accumulated as the camera travels across the scenes. Focusing on this scenario, we introduce the ISIA RGB-D video data set to evaluate RGB-D scene recognition with videos. Our video recognition architecture combines convolutional and recurrent neural networks that are trained in three steps with increasingly complex data to learn effective features (i.e., patches, frames, and sequences). Our approach obtains the state-of-the-art performances on RGB-D image (NYUD2 and SUN RGB-D) and video (ISIA RGB-D) scene recognition.
关键词Scene recognition deep learning multimodal RGB-D video CNN RNN
DOI10.1109/TIP.2018.2872629
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61532018] ; Lenovo Outstanding Young Scientists Program ; National Program for Special Support of Eminent Professionals ; National Program for Support of Top-notch Young Professionals ; National Postdoctoral Program for Innovative Talents[BX201700255] ; China Postdoctoral Science Foundation[2018M631583] ; European Union Research and Innovation Program under the Marie Sklodowska-Curie Grant[6655919]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000448501800011
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:34[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/3639
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jiang, Shuqiang
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Univ Autonoma Barcelona, Comp Vis Ctr, E-08193 Barcelona, Spain
推荐引用方式
GB/T 7714
Song, Xinhang,Jiang, Shuqiang,Herranz, Luis,et al. Learning Effective RGB-D Representations for Scene Recognition[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2019,28(2):980-993.
APA Song, Xinhang,Jiang, Shuqiang,Herranz, Luis,&Chen, Chengpeng.(2019).Learning Effective RGB-D Representations for Scene Recognition.IEEE TRANSACTIONS ON IMAGE PROCESSING,28(2),980-993.
MLA Song, Xinhang,et al."Learning Effective RGB-D Representations for Scene Recognition".IEEE TRANSACTIONS ON IMAGE PROCESSING 28.2(2019):980-993.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Xinhang]的文章
[Jiang, Shuqiang]的文章
[Herranz, Luis]的文章
百度学术
百度学术中相似的文章
[Song, Xinhang]的文章
[Jiang, Shuqiang]的文章
[Herranz, Luis]的文章
必应学术
必应学术中相似的文章
[Song, Xinhang]的文章
[Jiang, Shuqiang]的文章
[Herranz, Luis]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。