CSpace  > 中国科学院计算技术研究所期刊论文  > 中文
基于出行方式及语义轨迹的位置预测模型
章静蕾; 石海龙; 崔莉
2019
发表期刊计算机研究与发展
ISSN1000-1239
卷号56.0期号:007页码:1357
摘要现有位置预测方法的研究多集中于对轨迹数据的挖掘和分析,而在如何通过轨迹数据中含有的信息内容以及外源数据以提高位置预测精确度方面的研究尚不深入,有很大研究空间.提出了一种挖掘语义轨迹信息并结合出行方式的未来位置预测模型,该模型首先可实现根据语义轨迹进行相似用户挖掘,并结合个人语义轨迹和相似用户位置轨迹得到频繁模式集合,最后结合2个集合对目标轨迹得到未来位置预测候选集;然后可实现对未来出行方式进行识别,同时结合历史出行方式和位置轨迹数据,建立Markov模型对未来位置进行预测得到候选集,最后结合前一部分的候选集得到最终未来位置结果.此模型不仅能结合语义轨迹挖掘相似用户的行为活动,还可同时融合出行方式的外源数据克服位置轨迹的局限性.实验验证表明:该模型能对日常生活中的轨迹位置数据进行预测并达到86%的精确度,同时在不同的频繁模式支持度下,其精确度都比未结合出行方式模型时平均高出5%,因此本模型对位置预测结果的提高具有有效性.
关键词出行方式识别 频繁模式挖掘算法 语义轨迹 位置轨迹 位置预测
语种英语
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/36132
专题中国科学院计算技术研究所期刊论文_中文
作者单位中国科学院计算技术研究所
第一作者单位中国科学院计算技术研究所
推荐引用方式
GB/T 7714
章静蕾,石海龙,崔莉. 基于出行方式及语义轨迹的位置预测模型[J]. 计算机研究与发展,2019,56.0(007):1357.
APA 章静蕾,石海龙,&崔莉.(2019).基于出行方式及语义轨迹的位置预测模型.计算机研究与发展,56.0(007),1357.
MLA 章静蕾,et al."基于出行方式及语义轨迹的位置预测模型".计算机研究与发展 56.0.007(2019):1357.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[章静蕾]的文章
[石海龙]的文章
[崔莉]的文章
百度学术
百度学术中相似的文章
[章静蕾]的文章
[石海龙]的文章
[崔莉]的文章
必应学术
必应学术中相似的文章
[章静蕾]的文章
[石海龙]的文章
[崔莉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。