Institute of Computing Technology, Chinese Academy IR
| 基于动作捕捉的减重条件下心理疲劳状态测量技术 | |
| 王伟强(); 朱廷劭(); 刘晓倩(); 王亚猛(); 吴瑞林(); 马倩颖() | |
| 2019 | |
| 发表期刊 | 航天医学与医学工程
![]() |
| ISSN | 1002-0837 |
| 卷号 | 32期号:04页码:291 |
| 摘要 | 目的利用动作捕捉和机器学习技术,探讨减重条件下通过关节运动的三维空间坐标统计特征测量受试者心理疲劳状态的可行性与可靠性。方法通过长时间认知任务诱发受试者的心理疲劳状态并利用量表进行评估。采用Kinect深度摄像头识别并追踪受试者2min减重跑步运动过程中25个关节点的运动信息。利用高斯过程回归算法建立心理量表与行为数据间的模型,并通过皮尔逊相关和均方根误差对模型进行验证。结果在减重条件下,基于关节运动的统计特征可以预测个体的心理疲劳状态,疲劳量表各个维度预测值与真实值间平均相关系数为0.44,均方根误差为2.94,心境状态量表模型预测值和真实值同样达到中等相关0.45,均方根误差为5.49。结论人体关节运动信息可作为有效生物特征预测受试者心理疲劳水平,且在空间或资源有限情况时,基于动作捕捉和机器学习方法建立的心理指标预测模型可为未来载人航天任务心理状态测量提供新方法。 |
| 关键词 | 心理疲劳状态 动作捕捉 时间-空间特征 高斯过程回归模型 |
| 语种 | 英语 |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.204/handle/2XEOYT63/35458 |
| 专题 | 中国科学院计算技术研究所期刊论文_中文 |
| 作者单位 | 1.中国科学院计算技术研究所 2.中国科学院心理研究所 3.北京航空航天大学 |
| 推荐引用方式 GB/T 7714 | 王伟强(),朱廷劭(),刘晓倩(),等. 基于动作捕捉的减重条件下心理疲劳状态测量技术[J]. 航天医学与医学工程,2019,32(04):291. |
| APA | 王伟强,朱廷劭,刘晓倩,王亚猛,吴瑞林,&马倩颖.(2019).基于动作捕捉的减重条件下心理疲劳状态测量技术.航天医学与医学工程,32(04),291. |
| MLA | 王伟强,et al."基于动作捕捉的减重条件下心理疲劳状态测量技术".航天医学与医学工程 32.04(2019):291. |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 查看访问统计 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [王伟强()]的文章 |
| [朱廷劭()]的文章 |
| [刘晓倩()]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [王伟强()]的文章 |
| [朱廷劭()]的文章 |
| [刘晓倩()]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [王伟强()]的文章 |
| [朱廷劭()]的文章 |
| [刘晓倩()]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论