Institute of Computing Technology, Chinese Academy IR
Robust visual tracking via scale-and-state-awareness | |
Qi, Yuankai1; Qin, Lei2; Zhang, Shengping3; Huang, Qingming1,4; Yao, Hongxun1 | |
2019-02-15 | |
发表期刊 | NEUROCOMPUTING |
ISSN | 0925-2312 |
卷号 | 329页码:75-85 |
摘要 | Convolutional neural networks (CNNs) have been applied to visual tracking with demonstrated success in recent years. However, the performance of CNN-based trackers can be further improved, because the predicted upright bounding box cannot tightly enclose the target due to factors such as deformations and rotations. Besides, many existing CNN-based trackers neglect to distinguish the occluded state of the target from non-occluded states, which causes the samples collected during occlusions wrongly update the tracker to focus on other objects. To address these problems, we propose to adaptively utilize the level set segmentation and bounding box regression techniques to obtain a tight enclosing box, and design a CNN to recognize whether the target is occluded. Extensive experimental results on a large benchmark dataset demonstrate the effectiveness of the proposed method compared to several state-of-the-art tracking algorithms. (C) 2018 Elsevier B.V. All rights reserved. |
关键词 | Visual tracking Convolutional neural network Bounding box refinement Occlusion awareness |
DOI | 10.1016/j.neucom.2018.10.035 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61572465] ; National Natural Science Foundation of China[61390510] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61872112] ; National Natural Science Foundation of China[61772158] ; National Natural Science Foundation of China[61472103] ; National Natural Science Foundation of China[U1711265] ; Key Research Program of Frontier Sciences[CAS: QYZDJ-SSW-SYS013] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000453924300008 |
出版者 | ELSEVIER SCIENCE BV |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/3517 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Huang, Qingming |
作者单位 | 1.Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100089, Peoples R China 3.Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China 4.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Qi, Yuankai,Qin, Lei,Zhang, Shengping,et al. Robust visual tracking via scale-and-state-awareness[J]. NEUROCOMPUTING,2019,329:75-85. |
APA | Qi, Yuankai,Qin, Lei,Zhang, Shengping,Huang, Qingming,&Yao, Hongxun.(2019).Robust visual tracking via scale-and-state-awareness.NEUROCOMPUTING,329,75-85. |
MLA | Qi, Yuankai,et al."Robust visual tracking via scale-and-state-awareness".NEUROCOMPUTING 329(2019):75-85. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论