CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Robust visual tracking via scale-and-state-awareness
Qi, Yuankai1; Qin, Lei2; Zhang, Shengping3; Huang, Qingming1,4; Yao, Hongxun1
2019-02-15
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号329页码:75-85
摘要Convolutional neural networks (CNNs) have been applied to visual tracking with demonstrated success in recent years. However, the performance of CNN-based trackers can be further improved, because the predicted upright bounding box cannot tightly enclose the target due to factors such as deformations and rotations. Besides, many existing CNN-based trackers neglect to distinguish the occluded state of the target from non-occluded states, which causes the samples collected during occlusions wrongly update the tracker to focus on other objects. To address these problems, we propose to adaptively utilize the level set segmentation and bounding box regression techniques to obtain a tight enclosing box, and design a CNN to recognize whether the target is occluded. Extensive experimental results on a large benchmark dataset demonstrate the effectiveness of the proposed method compared to several state-of-the-art tracking algorithms. (C) 2018 Elsevier B.V. All rights reserved.
关键词Visual tracking Convolutional neural network Bounding box refinement Occlusion awareness
DOI10.1016/j.neucom.2018.10.035
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61572465] ; National Natural Science Foundation of China[61390510] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61872112] ; National Natural Science Foundation of China[61772158] ; National Natural Science Foundation of China[61472103] ; National Natural Science Foundation of China[U1711265] ; Key Research Program of Frontier Sciences[CAS: QYZDJ-SSW-SYS013]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000453924300008
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:28[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/3517
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Huang, Qingming
作者单位1.Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100089, Peoples R China
3.Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China
4.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Qi, Yuankai,Qin, Lei,Zhang, Shengping,et al. Robust visual tracking via scale-and-state-awareness[J]. NEUROCOMPUTING,2019,329:75-85.
APA Qi, Yuankai,Qin, Lei,Zhang, Shengping,Huang, Qingming,&Yao, Hongxun.(2019).Robust visual tracking via scale-and-state-awareness.NEUROCOMPUTING,329,75-85.
MLA Qi, Yuankai,et al."Robust visual tracking via scale-and-state-awareness".NEUROCOMPUTING 329(2019):75-85.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qi, Yuankai]的文章
[Qin, Lei]的文章
[Zhang, Shengping]的文章
百度学术
百度学术中相似的文章
[Qi, Yuankai]的文章
[Qin, Lei]的文章
[Zhang, Shengping]的文章
必应学术
必应学术中相似的文章
[Qi, Yuankai]的文章
[Qin, Lei]的文章
[Zhang, Shengping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。