CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Binary Volumetric Convolutional Neural Networks for 3-D Object Recognition
Ma, Chao1; Guo, Yulan1,2; Lei, Yinjie3; An, Wei1
2019
发表期刊IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
ISSN0018-9456
卷号68期号:1页码:38-48
摘要To address the high computational and memory cost in 3-D volumetric convolutional neural networks (CNNs), we propose an approach to train binary volumetric CNNs for 3-D object recognition. Our method is specifically designed for 3-D data, in which it transforms the inputs and weights in convolutional/fully connected layers to binary values, which can potentially accelerate the networks by efficient bitwise operations. Two loss calculation methods are designed to solve the accuracy decrease problem when the weights in the last layer are binarized. Four binary volumetric CNNs are obtained from their corresponding floating-point networks using our approach. Evaluations on three public datasets from different domains (Computer Aided Design (CAD), light detection and ranging (LiDAR), and RGB-D) show that our binary volumetric CNNs can achieve a comparable recognition performance as their floating-point counterparts but consume less computational and memory resources.
关键词3-D object recognition convolutional neural network (CNN) deep learning (DL) network binarization volumetric representation
DOI10.1109/TIM.2018.2840598
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61403265] ; National Natural Science Foundation of China[61602499] ; National Natural Science Foundation of China[61471371] ; Science and Technology Plan of Sichuan Province[2015SZ0226] ; National Postdoctoral Program for Innovative Talents[BX201600172] ; China Postdoctoral Science Foundation
WOS研究方向Engineering ; Instruments & Instrumentation
WOS类目Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:000452611600003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:45[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/3515
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Guo, Yulan
作者单位1.Natl Univ Def Technol, Coll Elect Sci, Changsha 410073, Hunan, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Sichuan, Peoples R China
推荐引用方式
GB/T 7714
Ma, Chao,Guo, Yulan,Lei, Yinjie,et al. Binary Volumetric Convolutional Neural Networks for 3-D Object Recognition[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2019,68(1):38-48.
APA Ma, Chao,Guo, Yulan,Lei, Yinjie,&An, Wei.(2019).Binary Volumetric Convolutional Neural Networks for 3-D Object Recognition.IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,68(1),38-48.
MLA Ma, Chao,et al."Binary Volumetric Convolutional Neural Networks for 3-D Object Recognition".IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 68.1(2019):38-48.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ma, Chao]的文章
[Guo, Yulan]的文章
[Lei, Yinjie]的文章
百度学术
百度学术中相似的文章
[Ma, Chao]的文章
[Guo, Yulan]的文章
[Lei, Yinjie]的文章
必应学术
必应学术中相似的文章
[Ma, Chao]的文章
[Guo, Yulan]的文章
[Lei, Yinjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。