CSpace  > 中国科学院计算技术研究所期刊论文  > 中文
Inferring functional connectivity in fmri using minimum partial correlation
Nie Lei1; Yang Xian1; Matthews Paul M1; Xu Zhiwei2; Guo Yike1
2017
发表期刊International journal of automation and computing
ISSN1476-8186
卷号14期号:4页码:371
摘要Functional connectivity has emerged as a promising approach to study the functional organisation of the brain and to define features for prediction of brain state. The most widely used method for inferring functional connectivity is Pearson's correlation, but it cannot differentiate direct and indirect effects. This disadvantage is often avoided by computing the partial correlation between two regions controlling all other regions, but this method suffers from Berkson's paradox. Some advanced methods, such as regularised inverse covariance, have been applied. However, these methods usually depend on some parameters. Here we propose use of minimum partial correlation as a parameter-free measure for the skeleton of functional connectivity in functional magnetic resonance imaging(fMRI). The minimum partial correlation between two regions is the minimum of absolute values of partial correlations by controlling all possible subsets of other regions. Theoretically, there is a direct effect between two regions if and only if their minimum partial correlation is non-zero under faithfulness and Gaussian assumptions. The elastic PC-algorithm is designed to efficiently approximate minimum partial correlation within a computational time budget. The simulation study shows that the proposed method outperforms others in most cases and its application is illustrated using a resting-state fMRI dataset from the human connectome project.
关键词Functional connectivity Functional magnetic resonance imaging (fmri) Network modelling Partial correlation Pc-algorithm Resting-state networks
语种英语
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/35108
专题中国科学院计算技术研究所期刊论文_中文
作者单位1.伦敦帝国学院
2.中国科学院计算技术研究所
推荐引用方式
GB/T 7714
Nie Lei,Yang Xian,Matthews Paul M,et al. Inferring functional connectivity in fmri using minimum partial correlation[J]. International journal of automation and computing,2017,14(4):371.
APA Nie Lei,Yang Xian,Matthews Paul M,Xu Zhiwei,&Guo Yike.(2017).Inferring functional connectivity in fmri using minimum partial correlation.International journal of automation and computing,14(4),371.
MLA Nie Lei,et al."Inferring functional connectivity in fmri using minimum partial correlation".International journal of automation and computing 14.4(2017):371.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nie Lei]的文章
[Yang Xian]的文章
[Matthews Paul M]的文章
百度学术
百度学术中相似的文章
[Nie Lei]的文章
[Yang Xian]的文章
[Matthews Paul M]的文章
必应学术
必应学术中相似的文章
[Nie Lei]的文章
[Yang Xian]的文章
[Matthews Paul M]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。