CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Knowledge triple mining via multi-task learning
Zhang, Zhao1,2; Zhuang, Fuzhen1,2; Li, Xuebing1; Niu, Zheng-Yu3; He, Jia1,2; He, Qing1,2; Xiong, Hui4
2019-02-01
发表期刊INFORMATION SYSTEMS
ISSN0306-4379
卷号80页码:64-75
摘要Recent years have witnessed the rapid development of knowledge bases (KBs) such as WordNet, Yago and DBpedia, which are useful resources in Al-related applications. However, most of the existing KBs are suffering from incompleteness and manually adding knowledge into KBs is inefficient. Therefore, automatically mining knowledge becomes a critical issue. To this end, in this paper, we propose to develop a model (S-2 AMT) to extract knowledge triples, such as , from the Internet and add them to KBs to support many downstream applications. Particularly, because the seed instances' for every relation is difficult to obtain, our model is capable of mining knowledge triples with limited available seed instances. To be more specific, we treat the knowledge triple mining task for each relation as a single task and use multi-task learning (MTL) algorithms to solve the problem, because MTL algorithms can often get better results than single-task learning (STL) ones with limited training data. Moreover, since finding proper task groups is a fatal problem in MTL which can directly influences the final results, we adopt a clustering algorithm to find proper task groups to further improve the performance. Finally, we conduct extensive experiments on real-world data sets and the experimental results clearly validate the performance of our MTL algorithms against STL ones. (C) 2018 Elsevier Ltd. All rights reserved.
关键词Multi-task learning Knowledge mining Relation extraction Knowledge graph construction
DOI10.1016/j.is.2018.09.003
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018YFB1004300] ; National Natural Science Foundation of China[61773361] ; National Natural Science Foundation of China[61473273] ; National Natural Science Foundation of China[91546122] ; Guangdong provincial science and technology plan projects[2015 B010109005] ; Project of Youth Innovation Promotion Association CAS[2017146]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000454964800005
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/3493
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhuang, Fuzhen
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Baidu Inc, Beijing, Peoples R China
4.Rutgers State Univ, Rutgers Business Sch, Management Sci & Informat Syst Dept, Newark, NJ USA
推荐引用方式
GB/T 7714
Zhang, Zhao,Zhuang, Fuzhen,Li, Xuebing,et al. Knowledge triple mining via multi-task learning[J]. INFORMATION SYSTEMS,2019,80:64-75.
APA Zhang, Zhao.,Zhuang, Fuzhen.,Li, Xuebing.,Niu, Zheng-Yu.,He, Jia.,...&Xiong, Hui.(2019).Knowledge triple mining via multi-task learning.INFORMATION SYSTEMS,80,64-75.
MLA Zhang, Zhao,et al."Knowledge triple mining via multi-task learning".INFORMATION SYSTEMS 80(2019):64-75.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhao]的文章
[Zhuang, Fuzhen]的文章
[Li, Xuebing]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhao]的文章
[Zhuang, Fuzhen]的文章
[Li, Xuebing]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhao]的文章
[Zhuang, Fuzhen]的文章
[Li, Xuebing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。