CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Context-adaptive matching for optical flow
Zu, Yueran1; Tang, Wenzhong1; Bao, Xiuguo2; Wang, Yanyang3; Gao, Ke4
2019
发表期刊MULTIMEDIA TOOLS AND APPLICATIONS
ISSN1380-7501
卷号78期号:1页码:641-659
摘要Modern sparse-to-dense optical flow estimation algorithms usually achieve state-of-art performance. Those algorithms need two steps: matching and interpolation. Matching is often unreliable for very large displacement optical flow due to illumination changes, deformations and occlusion etc. Moreover, conspicuous errors around motion discontinuities still keep serious as most methods consider edge only at interpolation step. The context-adaptive matching (CAM) is proposed for optical flow which is better at large displacement and edge preserving. The CAM is selective in feature extraction, adaptive in flow propagation and search radius adjusting. Selective features are proposed to consider edge preserving in matching step. Except for the usually used SIFT descriptor, the local directional pattern flow (LDPF) is introduced to keep more edge structure, and the oriented fast and rotated brief (ORB) is utilized to select out several most similar candidates. Unlike coarse-to-fine matching, which proposed a propagation step with only neighbors, we propose adaptive propagation to extend the matching candidates in order to improve the possibility of getting right correspondences. Furthermore, guided by prior knowledge and taking advantage of upper layers results, adaptive radius instead of constrained radius are proposed at finer layers. The CAM interpolated by EpicFlow is fast and robust for large displacements especially for fast moving objects and also preserves the edge structure well. Extensive experiments show that our algorithm is on par with the state-of-art optical flow methods on MPI-Sintel, KITTI and Middlebury.
关键词Optical flow PatchMatch Edge preserving Large displacement
DOI10.1007/s11042-017-5386-2
收录类别SCI
语种英语
资助项目Beijing Municipal Science and Technology Commission Project[Z171100000117010] ; National Key Research and Development Plan[2016YFB0801203] ; National Key Research and Development Plan[2016YFB0801200] ; National Nature Science Foundation of China[61271428]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000457317500036
出版者SPRINGER
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/3459
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Ke
作者单位1.Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
2.Coordinat Ctr China CNCERT, Natl Comp Network Emergency Response Tech Team, Beijing 100029, Peoples R China
3.Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Zu, Yueran,Tang, Wenzhong,Bao, Xiuguo,et al. Context-adaptive matching for optical flow[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2019,78(1):641-659.
APA Zu, Yueran,Tang, Wenzhong,Bao, Xiuguo,Wang, Yanyang,&Gao, Ke.(2019).Context-adaptive matching for optical flow.MULTIMEDIA TOOLS AND APPLICATIONS,78(1),641-659.
MLA Zu, Yueran,et al."Context-adaptive matching for optical flow".MULTIMEDIA TOOLS AND APPLICATIONS 78.1(2019):641-659.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zu, Yueran]的文章
[Tang, Wenzhong]的文章
[Bao, Xiuguo]的文章
百度学术
百度学术中相似的文章
[Zu, Yueran]的文章
[Tang, Wenzhong]的文章
[Bao, Xiuguo]的文章
必应学术
必应学术中相似的文章
[Zu, Yueran]的文章
[Tang, Wenzhong]的文章
[Bao, Xiuguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。