Institute of Computing Technology, Chinese Academy IR
A Fast and Refined Cancer Regions Segmentation Framework in Whole-slide Breast Pathological Images | |
Guo, Zichao1; Liu, Hong1; Ni, Haomiao1; Wang, Xiangdong1; Su, Mingming2,3,4,5; Guo, Wei6,7; Wang, Kuansong6,7; Jiang, Taijiao2,3,4; Qian, Yueliang1 | |
2019-01-29 | |
发表期刊 | SCIENTIFIC REPORTS |
ISSN | 2045-2322 |
卷号 | 9页码:10 |
摘要 | Supervised learning methods are commonly applied in medical image analysis. However, the success of these approaches is highly dependent on the availability of large manually detailed annotated dataset. Thus an automatic refined segmentation of whole-slide image (WSI) is significant to alleviate the annotation workload of pathologists. But most of the current ways can only output a rough prediction of lesion areas and consume much time in each slide. In this paper, we propose a fast and refined cancer regions segmentation framework v3_DCNN, which first preselects tumor regions using a classification model Inception-v3 and then employs a semantic segmentation model DCNN for refined segmentation. Our framework can generate a dense likelihood heatmap with the 1/8 side of original WSI in 11.5 minutes on the Camelyon16 dataset, which saves more than one hour for each WSI compared with the initial DCNN model. Experimental results show that our approach achieves a higher FROC score 83.5% with the champion's method of Camelyon16 challenge 80.7%. Based on v3 DCNN model, we further automatically produce heatmap of WSI and extract polygons of lesion regions for doctors, which is very helpful for their pathological diagnosis, detailed annotation and thus contributes to developing a more powerful deep learning model. |
DOI | 10.1038/s41598-018-37492-9 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Beijing Natural Science Foundation[4172058] ; Central Public-interest Scientific Institution Basal Research Fund[2016ZX310195] ; Central Public-interest Scientific Institution Basal Research Fund[2017PT31026] |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000456955500062 |
出版者 | NATURE PUBLISHING GROUP |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/3443 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Liu, Hong; Wang, Kuansong; Qian, Yueliang |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China 2.Chinese Acad Med Sci, Res Ctr Big Data Biomed Sci, Inst Basic Med Sci, Beijing 100005, Peoples R China 3.Peking Union Med Coll, Beijing 100005, Peoples R China 4.Suzhou Inst Syst Med, Suzhou 215123, Peoples R China 5.Peking Union Med Coll, Grad Sch, Beijing 100005, Peoples R China 6.Cent S Univ, Xiangya Hosp, Dept Pathol, Changsha 410013, Hunan, Peoples R China 7.Cent S Univ, Sch Basic Med Sci, Dept Pathol, Changsha 410013, Hunan, Peoples R China |
推荐引用方式 GB/T 7714 | Guo, Zichao,Liu, Hong,Ni, Haomiao,et al. A Fast and Refined Cancer Regions Segmentation Framework in Whole-slide Breast Pathological Images[J]. SCIENTIFIC REPORTS,2019,9:10. |
APA | Guo, Zichao.,Liu, Hong.,Ni, Haomiao.,Wang, Xiangdong.,Su, Mingming.,...&Qian, Yueliang.(2019).A Fast and Refined Cancer Regions Segmentation Framework in Whole-slide Breast Pathological Images.SCIENTIFIC REPORTS,9,10. |
MLA | Guo, Zichao,et al."A Fast and Refined Cancer Regions Segmentation Framework in Whole-slide Breast Pathological Images".SCIENTIFIC REPORTS 9(2019):10. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论