CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins
Fu, Hongli1; Yang, Yingxi1; Wang, Xiaobo1; Wang, Hui2; Xu, Yan1,3
2019-02-18
发表期刊BMC BIOINFORMATICS
ISSN1471-2105
卷号20页码:10
摘要BackgroundProtein ubiquitination occurs when the ubiquitin protein binds to a target protein residue of lysine (K), and it is an important regulator of many cellular functions, such as signal transduction, cell division, and immune reactions, in eukaryotes. Experimental and clinical studies have shown that ubiquitination plays a key role in several human diseases, and recent advances in proteomic technology have spurred interest in identifying ubiquitination sites. However, most current computing tools for predicting target sites are based on small-scale data and shallow machine learning algorithms.ResultsAs more experimentally validated ubiquitination sites emerge, we need to design a predictor that can identify lysine ubiquitination sites in large-scale proteome data. In this work, we propose a deep learning predictor, DeepUbi, based on convolutional neural networks. Four different features are adopted from the sequences and physicochemical properties. In a 10-fold cross validation, DeepUbi obtains an AUC (area under the Receiver Operating Characteristic curve) of 0.9, and the accuracy, sensitivity and specificity exceeded 85%. The more comprehensive indicator, MCC, reaches 0.78. We also develop a software package that can be freely downloaded from https://github.com/Sunmile/DeepUbi.ConclusionOur results show that DeepUbi has excellent performance in predicting ubiquitination based on large data.
关键词Ubiquitination Deep learning Convolutional neural networks
DOI10.1186/s12859-019-2677-9
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[11671032] ; National Traditional Medicine Clinical Research Base Business Construction Special Topics[JDZX2015299]
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Mathematical & Computational Biology
WOS类目Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Mathematical & Computational Biology
WOS记录号WOS:000459116200003
出版者BMC
引用统计
被引频次:52[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/3411
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xu, Yan
作者单位1.Univ Sci & Technol Beijing, Dept Informat & Comp Sci, Beijing 100083, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Univ Sci & Technol Beijing, Beijing Key Lab Magnetophotoelect Composite & Int, Beijing 100083, Peoples R China
推荐引用方式
GB/T 7714
Fu, Hongli,Yang, Yingxi,Wang, Xiaobo,et al. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins[J]. BMC BIOINFORMATICS,2019,20:10.
APA Fu, Hongli,Yang, Yingxi,Wang, Xiaobo,Wang, Hui,&Xu, Yan.(2019).DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins.BMC BIOINFORMATICS,20,10.
MLA Fu, Hongli,et al."DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins".BMC BIOINFORMATICS 20(2019):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fu, Hongli]的文章
[Yang, Yingxi]的文章
[Wang, Xiaobo]的文章
百度学术
百度学术中相似的文章
[Fu, Hongli]的文章
[Yang, Yingxi]的文章
[Wang, Xiaobo]的文章
必应学术
必应学术中相似的文章
[Fu, Hongli]的文章
[Yang, Yingxi]的文章
[Wang, Xiaobo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。