CSpace  > 中国科学院计算技术研究所期刊论文  > 中文
Progressive Image Denoising Algorithm
Li Haiyang; Cao Weiguo; Li Shirui; Tao Kelu; Li Hua
2017
发表期刊Journal of System Simulation
ISSN1004-731X
卷号29期号:2页码:282
摘要Currently almost all denoising algorithms are implemented by processing original noisy image itself simply, which could not enhance the performance further by combining original noisy image with the denoised image. To solve the problem, a framework of progressive image denoising method was proposed. The framework is based on the block matching and 3D collaborative filtering (BM3D) algorithm, which has the most remarkable denoising effect. It includes three layers and two fusions. Each layer is implemented by BM3D and denoises the fused image generated from the previous layers. Adequate statistical results show that under the same noise condition, our proposed method and another new algorithm can improve original BM3D on PSNR to different degrees, but ours has a better performance. As the noise increases, the performance improvement is more remarkable, which means that the proposed method can improve CT imaging quality and obtain good results.
关键词三维块匹配 非局部相似性 图像融合 渐进式
语种英语
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/32260
专题中国科学院计算技术研究所期刊论文_中文
作者单位中国科学院计算技术研究所
第一作者单位中国科学院计算技术研究所
推荐引用方式
GB/T 7714
Li Haiyang,Cao Weiguo,Li Shirui,et al. Progressive Image Denoising Algorithm[J]. Journal of System Simulation,2017,29(2):282.
APA Li Haiyang,Cao Weiguo,Li Shirui,Tao Kelu,&Li Hua.(2017).Progressive Image Denoising Algorithm.Journal of System Simulation,29(2),282.
MLA Li Haiyang,et al."Progressive Image Denoising Algorithm".Journal of System Simulation 29.2(2017):282.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li Haiyang]的文章
[Cao Weiguo]的文章
[Li Shirui]的文章
百度学术
百度学术中相似的文章
[Li Haiyang]的文章
[Cao Weiguo]的文章
[Li Shirui]的文章
必应学术
必应学术中相似的文章
[Li Haiyang]的文章
[Cao Weiguo]的文章
[Li Shirui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。