Institute of Computing Technology, Chinese Academy IR
Gaussian-curvature-derived invariants for isometry | |
Cao Weiguo1; Hu Ping1; Liu Yujie2; Gong Ming1; Li Hua1 | |
2013 | |
发表期刊 | SCIENCE CHINA-INFORMATION SCIENCES |
ISSN | 1674-733X |
卷号 | 56期号:9 |
摘要 | Surface deformations without tearing or stretching, preserving the intrinsic properties, are called isometries. This paper presents a new definition of Gaussian curvature moments (GCMs) by the integral of n power of Gaussian curvature. Then a series of moment invariants, called Gaussian curvature moment invariants (GCMIs), are derived via GCMs. These moment invariants share many good properties under rigid transformations and isometric non-rigid transformations, and Gaussian-Bonnet theorem is a special case of GCMI. GCMIs are invariant under isometry and scaling transformations. We construct an invariant vector as a descriptor for a surface via GCMIs, and a modified chi(2) distance is defined as a measure of similarity. Finally, experiments show that it is a reliable descriptor for isometric non-rigid shape. |
关键词 | MOMENT INVARIANTS SURFACES RECOGNITION MESHES OBJECT DISTRIBUTIONS SEGMENTATION COMPUTATION FRAMEWORK DISTANCES rigid object non-rigid object isometry scale Gaussian curvature moment moment invariant |
语种 | 英语 |
资助项目 | [National Natural Science Foundation of China] ; [National Basic Research Program of China] |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/29134 |
专题 | 中国科学院计算技术研究所期刊论文_中文 |
作者单位 | 1.中国科学院计算技术研究所 2.中国石油大学 |
第一作者单位 | 中国科学院计算技术研究所 |
推荐引用方式 GB/T 7714 | Cao Weiguo,Hu Ping,Liu Yujie,et al. Gaussian-curvature-derived invariants for isometry[J]. SCIENCE CHINA-INFORMATION SCIENCES,2013,56(9). |
APA | Cao Weiguo,Hu Ping,Liu Yujie,Gong Ming,&Li Hua.(2013).Gaussian-curvature-derived invariants for isometry.SCIENCE CHINA-INFORMATION SCIENCES,56(9). |
MLA | Cao Weiguo,et al."Gaussian-curvature-derived invariants for isometry".SCIENCE CHINA-INFORMATION SCIENCES 56.9(2013). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论