CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A combination predicting methodology based on T-LSTNet_Markov for short-term wind power prediction
Wang, Yongsheng1,2; Wu, Yuhao1; Xu, Hao1,2; Chen, Zhen1,2; Gao, Jing3,4; Xu, ZhiWei1,2,5; Li, Leixiao1,2
2023-05-20
发表期刊NETWORK-COMPUTATION IN NEURAL SYSTEMS
ISSN0954-898X
页码23
摘要Wind power has been valued by countries for its renewability and cleanness and has become most of the focus of energy development in all countries. However, due to the uncertainty and volatility of wind power generation, making the grid-connected wind power system presents some serious challenges. Improving the accuracy of wind power prediction has become the focus of current research. Therefore, this paper proposes a combined short-term wind power prediction model based on T-LSTNet_markov to improve prediction accuracy. First, perform data cleaning and data preprocessing operations on the original data. Second, forecast using T-LSTNet model in original wind power data. Finally, calculate the error between the forecast value and the actual value. The k-means++ method and Weighted Markov process are used to correct errors and to get the result of the final prediction. The data that are collected from a wind farm in Inner Mongolia Autonomous Region, China, are selected as a case study to demonstrate the effectiveness of the proposed combined models. The empirical results show that the prediction accuracy is further improved after correcting errors.
关键词Wind power forecast T-LSTNet_markov model Deep learning Time series analysis
DOI10.1080/0954898X.2023.2213756
收录类别SCI
语种英语
资助项目Department of Science and Technology of Inner Mongolia[2020CG0073] ; National Natural Science Foundation of China[61962045] ; Natural Science Foundation of Inner Mongolia[2019MS03014] ; Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region[NJZY21321] ; Science and Technology Major Project of Inner Mongolia[2019ZD016]
WOS研究方向Computer Science ; Engineering ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Neurosciences
WOS记录号WOS:000996919800001
出版者TAYLOR & FRANCIS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21474
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wu, Yuhao
作者单位1.Inner Mongolia Univ Technol, Coll Data Sci & Applicat, Hohhot, Peoples R China
2.Res Ctr Big Data Based Software Serv, Inner Mongolia Autonomous Reg Engn & Technol, Hohhot, Peoples R China
3.Inner Mongolia Agr Univ, Coll Comp & Informat Engn, Hohhot, Peoples R China
4.Inner Mongolia Autonomous Reg Key Lab Big Data Res, Hohhot, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yongsheng,Wu, Yuhao,Xu, Hao,et al. A combination predicting methodology based on T-LSTNet_Markov for short-term wind power prediction[J]. NETWORK-COMPUTATION IN NEURAL SYSTEMS,2023:23.
APA Wang, Yongsheng.,Wu, Yuhao.,Xu, Hao.,Chen, Zhen.,Gao, Jing.,...&Li, Leixiao.(2023).A combination predicting methodology based on T-LSTNet_Markov for short-term wind power prediction.NETWORK-COMPUTATION IN NEURAL SYSTEMS,23.
MLA Wang, Yongsheng,et al."A combination predicting methodology based on T-LSTNet_Markov for short-term wind power prediction".NETWORK-COMPUTATION IN NEURAL SYSTEMS (2023):23.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yongsheng]的文章
[Wu, Yuhao]的文章
[Xu, Hao]的文章
百度学术
百度学术中相似的文章
[Wang, Yongsheng]的文章
[Wu, Yuhao]的文章
[Xu, Hao]的文章
必应学术
必应学术中相似的文章
[Wang, Yongsheng]的文章
[Wu, Yuhao]的文章
[Xu, Hao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。