Institute of Computing Technology, Chinese Academy IR
Semi-Supervised CT Lesion Segmentation Using Uncertainty-Based Data Pairing and SwapMix | |
Qiao, Pengchong1,2; Li, Han3,4; Song, Guoli2; Han, Hu2,4,5; Gao, Zhiqiang2; Tian, Yonghong1,2; Liang, Yongsheng2,6; Li, Xi7; Zhou, S. Kevin3,4; Chen, Jie1,2 | |
2023-05-01 | |
发表期刊 | IEEE TRANSACTIONS ON MEDICAL IMAGING |
ISSN | 0278-0062 |
卷号 | 42期号:5页码:1546-1562 |
摘要 | Semi-supervised learning (SSL) methods show their powerful performance to deal with the issue of data shortage in the field of medical image segmentation. However, existing SSL methods still suffer from the problem of unreliable predictions on unannotated data due to the lack of manual annotations for them. In this paper, we propose an unreliability-diluted consistency training (UDiCT) mechanism to dilute the unreliability in SSL by assembling reliable annotated data into unreliable unannotated data. Specifically, we first propose an uncertainty-based data pairing module to pair annotated data with unannotated data based on a complementary uncertainty pairing rule, which avoids two hard samples being paired off. Secondly, we develop SwapMix, a mixed sample data augmentation method, to integrate annotated data into unannotated data for training our model in a low-unreliability manner. Finally, UDiCT is trained by minimizing a supervised loss and an unreliability-diluted consistency loss, which makes our model robust to diverse backgrounds. Extensive experiments on three chest CT datasets show the effectiveness of our method for semi-supervised CT lesion segmentation. |
关键词 | Lesions Image segmentation Computed tomography Uncertainty Training Predictive models Data models Semi-supervised learning lesion segmentation unreliable pseudo labels |
DOI | 10.1109/TMI.2022.3232572 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Natural Science Foundation of China[62176249] ; Natural Science Foundation of China[32071459] ; Natural Science Foundation of China[61972217] ; Natural Science Foundation of China[62006133] ; Natural Science Foundation of China[62271465] ; Natural Science Foundation of China[62081360152] ; Natural Science Foundation of Guangdong Province in China[2019B1515120049] ; Natural Science Foundation of Guangdong Province in China[2020B1111340056] |
WOS研究方向 | Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:000982483400026 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/21472 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Zhou, S. Kevin; Chen, Jie |
作者单位 | 1.Peking Univ, Sch Elect & Comp Engn, Shenzhen 518055, Peoples R China 2.Peng Cheng Lab, Shenzhen 518055, Peoples R China 3.Univ Sci & Technol China, Suzhou Inst Adv Res, Ctr Med Imaging Robot Analyt Comp & Learning MIRAC, Sch Biomed Engn, Hefei 230052, Peoples R China 4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100045, Peoples R China 5.Univ Chinese Acad Sci, Beijing 101408, Peoples R China 6.Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China 7.Peking Univ, Dept Gastroenterol, Shenzhen Hosp, Shenzhen 518036, Peoples R China |
推荐引用方式 GB/T 7714 | Qiao, Pengchong,Li, Han,Song, Guoli,et al. Semi-Supervised CT Lesion Segmentation Using Uncertainty-Based Data Pairing and SwapMix[J]. IEEE TRANSACTIONS ON MEDICAL IMAGING,2023,42(5):1546-1562. |
APA | Qiao, Pengchong.,Li, Han.,Song, Guoli.,Han, Hu.,Gao, Zhiqiang.,...&Chen, Jie.(2023).Semi-Supervised CT Lesion Segmentation Using Uncertainty-Based Data Pairing and SwapMix.IEEE TRANSACTIONS ON MEDICAL IMAGING,42(5),1546-1562. |
MLA | Qiao, Pengchong,et al."Semi-Supervised CT Lesion Segmentation Using Uncertainty-Based Data Pairing and SwapMix".IEEE TRANSACTIONS ON MEDICAL IMAGING 42.5(2023):1546-1562. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论