CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Semi-Supervised CT Lesion Segmentation Using Uncertainty-Based Data Pairing and SwapMix
Qiao, Pengchong1,2; Li, Han3,4; Song, Guoli2; Han, Hu2,4,5; Gao, Zhiqiang2; Tian, Yonghong1,2; Liang, Yongsheng2,6; Li, Xi7; Zhou, S. Kevin3,4; Chen, Jie1,2
2023-05-01
发表期刊IEEE TRANSACTIONS ON MEDICAL IMAGING
ISSN0278-0062
卷号42期号:5页码:1546-1562
摘要Semi-supervised learning (SSL) methods show their powerful performance to deal with the issue of data shortage in the field of medical image segmentation. However, existing SSL methods still suffer from the problem of unreliable predictions on unannotated data due to the lack of manual annotations for them. In this paper, we propose an unreliability-diluted consistency training (UDiCT) mechanism to dilute the unreliability in SSL by assembling reliable annotated data into unreliable unannotated data. Specifically, we first propose an uncertainty-based data pairing module to pair annotated data with unannotated data based on a complementary uncertainty pairing rule, which avoids two hard samples being paired off. Secondly, we develop SwapMix, a mixed sample data augmentation method, to integrate annotated data into unannotated data for training our model in a low-unreliability manner. Finally, UDiCT is trained by minimizing a supervised loss and an unreliability-diluted consistency loss, which makes our model robust to diverse backgrounds. Extensive experiments on three chest CT datasets show the effectiveness of our method for semi-supervised CT lesion segmentation.
关键词Lesions Image segmentation Computed tomography Uncertainty Training Predictive models Data models Semi-supervised learning lesion segmentation unreliable pseudo labels
DOI10.1109/TMI.2022.3232572
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[62176249] ; Natural Science Foundation of China[32071459] ; Natural Science Foundation of China[61972217] ; Natural Science Foundation of China[62006133] ; Natural Science Foundation of China[62271465] ; Natural Science Foundation of China[62081360152] ; Natural Science Foundation of Guangdong Province in China[2019B1515120049] ; Natural Science Foundation of Guangdong Province in China[2020B1111340056]
WOS研究方向Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000982483400026
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21472
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhou, S. Kevin; Chen, Jie
作者单位1.Peking Univ, Sch Elect & Comp Engn, Shenzhen 518055, Peoples R China
2.Peng Cheng Lab, Shenzhen 518055, Peoples R China
3.Univ Sci & Technol China, Suzhou Inst Adv Res, Ctr Med Imaging Robot Analyt Comp & Learning MIRAC, Sch Biomed Engn, Hefei 230052, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100045, Peoples R China
5.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
6.Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
7.Peking Univ, Dept Gastroenterol, Shenzhen Hosp, Shenzhen 518036, Peoples R China
推荐引用方式
GB/T 7714
Qiao, Pengchong,Li, Han,Song, Guoli,et al. Semi-Supervised CT Lesion Segmentation Using Uncertainty-Based Data Pairing and SwapMix[J]. IEEE TRANSACTIONS ON MEDICAL IMAGING,2023,42(5):1546-1562.
APA Qiao, Pengchong.,Li, Han.,Song, Guoli.,Han, Hu.,Gao, Zhiqiang.,...&Chen, Jie.(2023).Semi-Supervised CT Lesion Segmentation Using Uncertainty-Based Data Pairing and SwapMix.IEEE TRANSACTIONS ON MEDICAL IMAGING,42(5),1546-1562.
MLA Qiao, Pengchong,et al."Semi-Supervised CT Lesion Segmentation Using Uncertainty-Based Data Pairing and SwapMix".IEEE TRANSACTIONS ON MEDICAL IMAGING 42.5(2023):1546-1562.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiao, Pengchong]的文章
[Li, Han]的文章
[Song, Guoli]的文章
百度学术
百度学术中相似的文章
[Qiao, Pengchong]的文章
[Li, Han]的文章
[Song, Guoli]的文章
必应学术
必应学术中相似的文章
[Qiao, Pengchong]的文章
[Li, Han]的文章
[Song, Guoli]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。