Institute of Computing Technology, Chinese Academy IR
Vision-based food nutrition estimation via RGB-D fusion network | |
Shao, Wenjing1; Min, Weiqing2,3; Hou, Sujuan1; Luo, Mengjiang2,3; Li, Tianhao2,3; Zheng, Yuanjie1; Jiang, Shuqiang2,3 | |
2023-10-30 | |
发表期刊 | FOOD CHEMISTRY |
ISSN | 0308-8146 |
卷号 | 424页码:10 |
摘要 | With the development of deep learning technology, vision-based food nutrition estimation is gradually entering the public view for its advantage in accuracy and efficiency. In this paper, we designed one RGB-D fusion network, which integrated multimodal feature fusion (MMFF) and multi-scale fusion for visioin-based nutrition assessment. MMFF performed effective feature fusion by a balanced feature pyramid and convolutional block attention module. Multi-scale fusion fused different resolution features through feature pyramid network. Both enhanced feature representation to improve the performance of the model. Compared with state-of-the-art methods, the mean value of the percentage mean absolute error (PMAE) for our method reached 18.5%. The PMAE of calories and mass reached 15.0% and 10.8% via the RGB-D fusion network, improved by 3.8% and 8.1%, respectively. Furthermore, this study visualized the estimation results of four nutrients and verified the validity of the method. This research contributed to the development of automated food nutrient analysis (Code and models can be found at http://123.57.42.89/codes/RGB-DNet/nutrition.html). |
关键词 | Food nutrient Nutrition estimation Food composition Deep learning RGB-D fusion |
DOI | 10.1016/j.foodchem.2023.136309 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Nature Science Foundation of China[62072289] ; National Nature Science Foundation of China[61972378] ; National Nature Science Foundation of China[U19B2040] ; National Nature Science Foundation of China[62125207] ; CAAI-Huawei MindSpore Open Fund |
WOS研究方向 | Chemistry ; Food Science & Technology ; Nutrition & Dietetics |
WOS类目 | Chemistry, Applied ; Food Science & Technology ; Nutrition & Dietetics |
WOS记录号 | WOS:001002350200001 |
出版者 | ELSEVIER SCI LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/21470 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Min, Weiqing; Hou, Sujuan |
作者单位 | 1.Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Shandong, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Shao, Wenjing,Min, Weiqing,Hou, Sujuan,et al. Vision-based food nutrition estimation via RGB-D fusion network[J]. FOOD CHEMISTRY,2023,424:10. |
APA | Shao, Wenjing.,Min, Weiqing.,Hou, Sujuan.,Luo, Mengjiang.,Li, Tianhao.,...&Jiang, Shuqiang.(2023).Vision-based food nutrition estimation via RGB-D fusion network.FOOD CHEMISTRY,424,10. |
MLA | Shao, Wenjing,et al."Vision-based food nutrition estimation via RGB-D fusion network".FOOD CHEMISTRY 424(2023):10. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论