CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
XAI-enabled neural network analysis of metabolite spatial distributions
Ma, Wenwu1,2,3,4,5; Luo, Lanfang2,3,4,5; Liang, Kun2,3,4,5; Liu, Taoyan2,3,4,5; Su, Jiali2,3,4,5; Wang, Yuefan2,3,4,5; Li, Jun6,7,8; Zhou, S. Kevin6,7,8; Shyh-Chang, Ng2,3,4,5
2023-04-21
发表期刊ANALYTICAL AND BIOANALYTICAL CHEMISTRY
ISSN1618-2642
页码12
摘要We used deep neural networks to process the mass spectrometry imaging (MSI) data of mouse muscle (young vs aged) and human cancer (tumor vs normal adjacent) tissues, with the aim of using explainable artificial intelligence (XAI) methods to rapidly identify biomarkers that can distinguish different classes of tissues, from several thousands of metabolite features. We also modified classic neural network architectures to construct a deep convolutional neural network that is more suitable for processing high-dimensional MSI data directly, instead of using dimension reduction techniques, and compared it to seven other machine learning analysis methods' performance in classification accuracy. After ascertaining the superiority of Channel-ResNet10, we used a novel channel selection-based XAI method to identify the key metabolite features that were responsible for its learning accuracy. These key metabolite biomarkers were then processed using MetaboAnalyst for pathway enrichment mapping. We found that Channel-ResNet10 was superior to seven other machine learning methods for MSI analysis, reaching > 98% accuracy in muscle aging and colorectal cancer datasets. We also used a novel channel selection-based XAI method to find that in young and aged muscle tissues, the differentially distributed metabolite biomarkers were especially enriched in the propanoate metabolism pathway, suggesting it as a novel target pathway for anti-aging therapy.
关键词Mass spectrometry imaging Deep neural networks Feature extraction Pathway analysis Aging
DOI10.1007/s00216-023-04694-8
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2019YFA0801701] ; National Natural Science Foundation of China[91957202] ; CAS Project for Young Scientists in Basic Research[YSBR-012] ; State Key Laboratory of Stem Cell and Reproductive Biology
WOS研究方向Biochemistry & Molecular Biology ; Chemistry
WOS类目Biochemical Research Methods ; Chemistry, Analytical
WOS记录号WOS:000976256000003
出版者SPRINGER HEIDELBERG
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21410
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shyh-Chang, Ng
作者单位1.Univ Sci & Technol China, Dept Life Sci & Med, Hefei, Peoples R China
2.Chinese Acad Sci, State Key Lab Stem Cell & Reprod Biol, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Stem Cell & Regenerat, Beijing, Peoples R China
4.Univ Chinese Acad Sci, Beijing, Peoples R China
5.Beijing Inst Stem Cell & Regenerat Med, Beijing, Peoples R China
6.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc Chinese Acad Sci, Beijing, Peoples R China
7.Univ Sci & Technol China, Ctr Med Imaging Robot Analyt Comp & Learning MIRAC, Sch Biomed Engn, Suzhou, Peoples R China
8.Univ Sci & Technol China, Suzhou Inst Adv Res, Suzhou, Peoples R China
推荐引用方式
GB/T 7714
Ma, Wenwu,Luo, Lanfang,Liang, Kun,et al. XAI-enabled neural network analysis of metabolite spatial distributions[J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY,2023:12.
APA Ma, Wenwu.,Luo, Lanfang.,Liang, Kun.,Liu, Taoyan.,Su, Jiali.,...&Shyh-Chang, Ng.(2023).XAI-enabled neural network analysis of metabolite spatial distributions.ANALYTICAL AND BIOANALYTICAL CHEMISTRY,12.
MLA Ma, Wenwu,et al."XAI-enabled neural network analysis of metabolite spatial distributions".ANALYTICAL AND BIOANALYTICAL CHEMISTRY (2023):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ma, Wenwu]的文章
[Luo, Lanfang]的文章
[Liang, Kun]的文章
百度学术
百度学术中相似的文章
[Ma, Wenwu]的文章
[Luo, Lanfang]的文章
[Liang, Kun]的文章
必应学术
必应学术中相似的文章
[Ma, Wenwu]的文章
[Luo, Lanfang]的文章
[Liang, Kun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。