CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning-Based Intrinsic Reflectional Symmetry Detection
Qiao, Yi-Ling1,2; Gao, Lin2,3; Liu, Shu-Zhi2,3; Liu, Ligang4; Lai, Yu-Kun5; Chen, Xilin6
2023-09-01
发表期刊IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
ISSN1077-2626
卷号29期号:9页码:3799-3808
摘要Reflectional symmetry is a ubiquitous pattern in nature. Previous works usually solve this problem by voting or sampling, suffering from high computational cost and randomness. In this article, we propose a learning-based approach to intrinsic reflectional symmetry detection. Instead of directly finding symmetric point pairs, we parametrize this self-isometry using a functional map matrix, which can be easily computed given the signs of Laplacian eigenfunctions under the symmetric mapping. Therefore, we manually label the eigenfunction signs for a variety of shapes and train a novel neural network to predict the sign of each eigenfunction under symmetry. Our network aims at learning the global property of functions and consequently converts the problem defined on the manifold to the functional domain. By disentangling the prediction of the matrix into separated bases, our method generalizes well to new shapes and is invariant under perturbation of eigenfunctions. Through extensive experiments, we demonstrate the robustness of our method in challenging cases, including different topology and incomplete shapes with holes. By avoiding random sampling, our learning-based algorithm is over 20 times faster than state-of-the-art methods, and meanwhile, is more robust, achieving higher correspondence accuracy in commonly used metrics.
关键词Mesh processing symmetry detection deep learning intrinsic reflectional symmetry laplacian eigenanalysis
DOI10.1109/TVCG.2022.3172361
收录类别SCI
语种英语
资助项目Beijing Municipal Natural Science Foundation for Distinguished Young Scholars[JQ21013] ; National Natural Science Foundation of China[62061136007] ; National Natural Science Foundation of China[61872440] ; Royal Society Newton Advanced Fellowship[NAF-R2-192151] ; Youth Innovation Promotion Association CAS
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001041912300006
出版者IEEE COMPUTER SOC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21376
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Lin; Chen, Xilin
作者单位1.Univ Maryland, College Pk, MD 20742 USA
2.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 101408, Peoples R China
4.Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
5.Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF10 3AT, Wales
6.Chinese Acad Sci, Inst Comp Technol, Beijing 101408, Peoples R China
推荐引用方式
GB/T 7714
Qiao, Yi-Ling,Gao, Lin,Liu, Shu-Zhi,et al. Learning-Based Intrinsic Reflectional Symmetry Detection[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2023,29(9):3799-3808.
APA Qiao, Yi-Ling,Gao, Lin,Liu, Shu-Zhi,Liu, Ligang,Lai, Yu-Kun,&Chen, Xilin.(2023).Learning-Based Intrinsic Reflectional Symmetry Detection.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,29(9),3799-3808.
MLA Qiao, Yi-Ling,et al."Learning-Based Intrinsic Reflectional Symmetry Detection".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 29.9(2023):3799-3808.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiao, Yi-Ling]的文章
[Gao, Lin]的文章
[Liu, Shu-Zhi]的文章
百度学术
百度学术中相似的文章
[Qiao, Yi-Ling]的文章
[Gao, Lin]的文章
[Liu, Shu-Zhi]的文章
必应学术
必应学术中相似的文章
[Qiao, Yi-Ling]的文章
[Gao, Lin]的文章
[Liu, Shu-Zhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。