CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Improving Face Anti-spoofing via Advanced Multi-perspective Feature Learning
Wang, Zhuming1; Xu, Yaowen1; Wu, Lifang1,2; Han, Hu3,4,5; Ma, Yukun6; Li, Zun1
2023-11-01
发表期刊ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
ISSN1551-6857
卷号19期号:6页码:18
摘要Face anti-spoofing (FAS) plays a vital role in securing face recognition systems. Previous approaches usually learn spoofing features from a single perspective, in which only universal cues shared by all attack types are explored. However, such single-perspective-based approaches ignore the differences among various attacks and commonness between certain attacks and bona fides, thus tending to neglect some non-universal cues that contain strong discernibility against certain types. As a result, when dealing with multiple types of attacks, the above approaches may suffer from the uncomprehensive representation of bona fides and spoof faces. In this work, we propose a novel Advanced Multi-Perspective Feature Learning network (AMPFL), in which multiple perspectives are adopted to learn discriminative features, to improve the performance of FAS. Specifically, the proposed network first learns universal cues and several perspective-specific cues from multiple perspectives, then aggregates the above features and further enhances them to perform face anti-spoofing. In this way, AMPFL obtains features that are difficult to be captured by single-perspective-based methods and provides more comprehensive information on bona fides and spoof faces, thus achieving better performance for FAS. Experimental results show that our AMPFL achieves promising results in public databases, and it effectively solves the issues of single-perspective-based approaches.
关键词Face anti-spoofing multi-perspective universal cues
DOI10.1145/3575660
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[61976010,61732004] ; Natural Science Foundation of China[62176249] ; Natural Science Foundation of China[62106010] ; Natural Science Foundation of China[62176011] ; China Postdoctoral Science Foundation[2022M720318] ; Beijing Postdoctoral Science Foundation[2022-zz-077]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:001035785200035
出版者ASSOC COMPUTING MACHINERY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21370
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wu, Lifang
作者单位1.Beijing Univ Technol, Beijing 100124, Peoples R China
2.Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
5.Pengcheng Lab, Shenzhen 518055, Peoples R China
6.Henan Inst Sci & Technol, Xinxiang, Henan, Peoples R China
推荐引用方式
GB/T 7714
Wang, Zhuming,Xu, Yaowen,Wu, Lifang,et al. Improving Face Anti-spoofing via Advanced Multi-perspective Feature Learning[J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,2023,19(6):18.
APA Wang, Zhuming,Xu, Yaowen,Wu, Lifang,Han, Hu,Ma, Yukun,&Li, Zun.(2023).Improving Face Anti-spoofing via Advanced Multi-perspective Feature Learning.ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,19(6),18.
MLA Wang, Zhuming,et al."Improving Face Anti-spoofing via Advanced Multi-perspective Feature Learning".ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 19.6(2023):18.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Zhuming]的文章
[Xu, Yaowen]的文章
[Wu, Lifang]的文章
百度学术
百度学术中相似的文章
[Wang, Zhuming]的文章
[Xu, Yaowen]的文章
[Wu, Lifang]的文章
必应学术
必应学术中相似的文章
[Wang, Zhuming]的文章
[Xu, Yaowen]的文章
[Wu, Lifang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。