CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
An anomaly aware network embedding framework for unsupervised anomalous link detection
Duan, Dongsheng1; Zhang, Cheng2; Tong, Lingling1; Lu, Jie2; Lv, Cunchi2; Hou, Wei1; Li, Yangxi1; Zhao, Xiaofang2
2023-08-19
发表期刊DATA MINING AND KNOWLEDGE DISCOVERY
ISSN1384-5810
页码34
摘要Most existing network embedding based anomalous link detection methods regard network embedding and anomalous link detection as two independent tasks. However, removing anomalous links from the original network can reduce the data noise, thus hopefully improving the performance of network embedding models and anomalous link detection. In this paper, we propose an Anomaly Aware Network Embedding (AANE) framework by simultaneously learning node embedding and detecting anomalous links in a unified way. To instantiate the AANE framework, we propose a heuristic anomalous link selection based model AANE-H and an embedding disentangling based model AANE-D on Graph Auto-Encoder (GAE). In AANE-H, we adopt an anomalous link selector to iteratively select significant anomalous links based on a heuristic rule during model training, while in AANE-D the normal and anomalous links are generated by disentangled normal and anomalous embedding respectively. For the evaluation purpose, we propose a heuristic anomalous link generation algorithm to inject synthetic anomalous links into six real-world network datasets used in our experiments. Experimental results show that AANE outperforms both the state-of-the-art network embedding models and anomalous node detection models in terms of anomalous link detection performance. As a general network embedding model, AANE can also improve other downstream tasks like node classification.
关键词Anomalous link detection Network embedding Graph auto-encoder Graph convolution network
DOI10.1007/s10618-023-00960-6
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62272125] ; National Natural Science Foundation of China[62192785] ; National Natural Science Foundation of China[U1836111] ; National Natural Science Foundation of China[U1936110]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:001050238700001
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21366
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Duan, Dongsheng; Zhang, Cheng
作者单位1.Coordinat Ctr China, Natl Comp Network Emergency Response Tech Team, A3 Yuming Rd, Beijing 100029, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, 6 Kexueyuan South Rd, Beijing 100086, Peoples R China
推荐引用方式
GB/T 7714
Duan, Dongsheng,Zhang, Cheng,Tong, Lingling,et al. An anomaly aware network embedding framework for unsupervised anomalous link detection[J]. DATA MINING AND KNOWLEDGE DISCOVERY,2023:34.
APA Duan, Dongsheng.,Zhang, Cheng.,Tong, Lingling.,Lu, Jie.,Lv, Cunchi.,...&Zhao, Xiaofang.(2023).An anomaly aware network embedding framework for unsupervised anomalous link detection.DATA MINING AND KNOWLEDGE DISCOVERY,34.
MLA Duan, Dongsheng,et al."An anomaly aware network embedding framework for unsupervised anomalous link detection".DATA MINING AND KNOWLEDGE DISCOVERY (2023):34.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Duan, Dongsheng]的文章
[Zhang, Cheng]的文章
[Tong, Lingling]的文章
百度学术
百度学术中相似的文章
[Duan, Dongsheng]的文章
[Zhang, Cheng]的文章
[Tong, Lingling]的文章
必应学术
必应学术中相似的文章
[Duan, Dongsheng]的文章
[Zhang, Cheng]的文章
[Tong, Lingling]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。