Institute of Computing Technology, Chinese Academy IR
An anomaly aware network embedding framework for unsupervised anomalous link detection | |
Duan, Dongsheng1; Zhang, Cheng2; Tong, Lingling1; Lu, Jie2; Lv, Cunchi2; Hou, Wei1; Li, Yangxi1; Zhao, Xiaofang2 | |
2023-08-19 | |
发表期刊 | DATA MINING AND KNOWLEDGE DISCOVERY |
ISSN | 1384-5810 |
页码 | 34 |
摘要 | Most existing network embedding based anomalous link detection methods regard network embedding and anomalous link detection as two independent tasks. However, removing anomalous links from the original network can reduce the data noise, thus hopefully improving the performance of network embedding models and anomalous link detection. In this paper, we propose an Anomaly Aware Network Embedding (AANE) framework by simultaneously learning node embedding and detecting anomalous links in a unified way. To instantiate the AANE framework, we propose a heuristic anomalous link selection based model AANE-H and an embedding disentangling based model AANE-D on Graph Auto-Encoder (GAE). In AANE-H, we adopt an anomalous link selector to iteratively select significant anomalous links based on a heuristic rule during model training, while in AANE-D the normal and anomalous links are generated by disentangled normal and anomalous embedding respectively. For the evaluation purpose, we propose a heuristic anomalous link generation algorithm to inject synthetic anomalous links into six real-world network datasets used in our experiments. Experimental results show that AANE outperforms both the state-of-the-art network embedding models and anomalous node detection models in terms of anomalous link detection performance. As a general network embedding model, AANE can also improve other downstream tasks like node classification. |
关键词 | Anomalous link detection Network embedding Graph auto-encoder Graph convolution network |
DOI | 10.1007/s10618-023-00960-6 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[62272125] ; National Natural Science Foundation of China[62192785] ; National Natural Science Foundation of China[U1836111] ; National Natural Science Foundation of China[U1936110] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems |
WOS记录号 | WOS:001050238700001 |
出版者 | SPRINGER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/21366 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Duan, Dongsheng; Zhang, Cheng |
作者单位 | 1.Coordinat Ctr China, Natl Comp Network Emergency Response Tech Team, A3 Yuming Rd, Beijing 100029, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, 6 Kexueyuan South Rd, Beijing 100086, Peoples R China |
推荐引用方式 GB/T 7714 | Duan, Dongsheng,Zhang, Cheng,Tong, Lingling,et al. An anomaly aware network embedding framework for unsupervised anomalous link detection[J]. DATA MINING AND KNOWLEDGE DISCOVERY,2023:34. |
APA | Duan, Dongsheng.,Zhang, Cheng.,Tong, Lingling.,Lu, Jie.,Lv, Cunchi.,...&Zhao, Xiaofang.(2023).An anomaly aware network embedding framework for unsupervised anomalous link detection.DATA MINING AND KNOWLEDGE DISCOVERY,34. |
MLA | Duan, Dongsheng,et al."An anomaly aware network embedding framework for unsupervised anomalous link detection".DATA MINING AND KNOWLEDGE DISCOVERY (2023):34. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论