CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DeePMD-kit v2: A software package for deep potential models
Zeng, Jinzhe1,2; Zhang, Duo3,4,5; Lu, Denghui6; Mo, Pinghui7; Li, Zeyu8; Chen, Yixiao9; Rynik, Marian10; Huang, Li'ang11; Li, Ziyao4,12; Shi, Shaochen13; Wang, Yingze4,14; Ye, Haotian8; Tuo, Ping3; Yang, Jiabin15; Ding, Ye16,17; Li, Yifan18; Tisi, Davide19,20; Zeng, Qiyu21; Bao, Han22,23; Xia, Yu13; Huang, Jiameng4,24; Muraoka, Koki25; Wang, Yibo4; Chang, Junhan4,14; Yuan, Fengbo4; Bore, Sigbjorn Loland26,27; Cai, Chun3,4; Lin, Yinnian28; Wang, Bo29; Xu, Jiayan30; Zhu, Jia-Xin31; Luo, Chenxing32; Zhang, Yuzhi4; Goodall, Rhys E. A.; Liang, Wenshuo4; Singh, Anurag Kumar33; Yao, Sikai4; Zhang, Jingchao34; Wentzcovitch, Renata32,35; Han, Jiequn36; Liu, Jie7; Jia, Weile22,23; York, Darrin M.1,2; E, Weinan3,37,38; Car, Roberto18; Zhang, Linfeng3,4; Wang, Han6,39
2023-08-07
发表期刊JOURNAL OF CHEMICAL PHYSICS
ISSN0021-9606
卷号159期号:5页码:24
摘要DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.
DOI10.1063/5.0155600
收录类别SCI
语种英语
资助项目National Institutes of Health[GM107485] ; National Science Foundation[2138259] ; National Science Foundation[2138286] ; National Science Foundation[2138307] ; National Science Foundation[2137603] ; National Science Foundation[2138296] ; National Science Foundation[CHE190067] ; Van Dyke Award from the Department of Chemistry and Chemical Biology, Rutgers ; VEGA[APVV-19-0371] ; Slovak Research and Development Agency[2021RC4026] ; Science and Technology Innovation Program of Hunan Province[262695] ; Research Council of Norway through the Centre of Excellence Hylleraas Centre for Quantum Molecular Sciences[DE-SC0019759] ; United States Department of Energy (DOE)[2022YFA1004300] ; National Key Ramp;D Program of China[12122103] ; National Natural Science Foundation of China[CHE20002] ; State University of New Jersey ; Advanced Cyberinfrastructure Coordination Ecosystem: Services amp; Support (ACCESS) program ; Chemistry in Solution and at Interfaces (CSI) Center - United States Department of Energy ; Texas Advanced Computing Center (TACC) at the University of Texas at Austin[DE-SC0019394] ; Princeton Research Computing resources at Princeton University ; AMD Cloud Platform at AMD, Inc ; [1/0640/20]
WOS研究方向Chemistry ; Physics
WOS类目Chemistry, Physical ; Physics, Atomic, Molecular & Chemical
WOS记录号WOS:001041174500011
出版者AIP Publishing
引用统计
被引频次:107[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21344
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Han
作者单位1.Rutgers State Univ, Inst Quantitat Biomed, Lab Biomol Simulat Res, Piscataway, NJ 08854 USA
2.Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
3.AI Sci Inst, Beijing 100080, Peoples R China
4.DP Technol, Beijing 100080, Peoples R China
5.Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
6.Peking Univ, Coll Engn, HEDPS, CAPT, Beijing 100871, Peoples R China
7.Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China
8.Peking Univ, Yuanpei Coll, Beijing 100871, Peoples R China
9.Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08540 USA
10.Comenius Univ, Dept Expt Phys, Mlynska Dolina F2, Bratislava 84248, Slovakia
11.Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China
12.Peking Univ, Ctr Data Sci, Beijing 100871, Peoples R China
13.ByteDance Res, Zhonghang Plaza,43, North 3rd Ring West Rd, Beijing, Peoples R China
14.Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
15.Baidu Inc, Beijing, Peoples R China
16.Westlake Univ, Sch Life Sci, Key Lab Struct Biol Zhejiang Prov, Hangzhou, Zhejiang, Peoples R China
17.Westlake Lab Life Sci & Biomed, Westlake AI Therapeut Lab, Hangzhou, Zhejiang, Peoples R China
18.Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
19.SISSA, I-34136 Trieste, Italy
20.Ecole Polytech Fed Lausanne, Inst Mat, Lab Computat Sci & Modeling, CH-1015 Lausanne, Switzerland
21.Natl Univ Def Technol, Dept Phys, Changsha 410073, Hunan, Peoples R China
22.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing, Peoples R China
23.Univ Chinese Acad Sci, Beijing, Peoples R China
24.Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
25.Univ Tokyo, Dept Chem Syst Engn, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
26.Univ Oslo, Hylleraas Ctr Quantum Mol Sci, POB 1033 Blindern, N-0315 Oslo, Norway
27.Univ Oslo, Dept Chem, POB 1033 Blindern, N-0315 Oslo, Norway
28.Peking Univ, Wangxuan Inst Comp Technol, Beijing 100871, Peoples R China
29.East China Normal Univ, Shanghai Engn Res Ctr Mol Therapeut & New Drug Dev, Shanghai Key Lab ofGreen Chem & Chem Proc, Sch Chem & Mol Engn, Shanghai 200062, Peoples R China
30.Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT9 5AG, North Ireland
31.Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, iChEM, Xiamen 361005, Peoples R China
32.Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
33.Indian Inst Technol, Dept Data Sci, Palakkad, Kerala, India
34.NVIDIA Technol Ctr NVAITC, Santa Clara, CA 95051 USA
35.Columbia Univ, Dept Earth & Environm Sci, New York, NY 10027 USA
36.Flatiron Inst, Ctr Computat Math, New York, NY 10010 USA
37.Peking Univ, Ctr Machine Learning Res, Beijing 100871, Peoples R China
38.Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
39.Inst Appl Phys & Computat Math, Lab Computat Phys, Fenghao East Rd 2, Beijing 100094, Peoples R China
推荐引用方式
GB/T 7714
Zeng, Jinzhe,Zhang, Duo,Lu, Denghui,et al. DeePMD-kit v2: A software package for deep potential models[J]. JOURNAL OF CHEMICAL PHYSICS,2023,159(5):24.
APA Zeng, Jinzhe.,Zhang, Duo.,Lu, Denghui.,Mo, Pinghui.,Li, Zeyu.,...&Wang, Han.(2023).DeePMD-kit v2: A software package for deep potential models.JOURNAL OF CHEMICAL PHYSICS,159(5),24.
MLA Zeng, Jinzhe,et al."DeePMD-kit v2: A software package for deep potential models".JOURNAL OF CHEMICAL PHYSICS 159.5(2023):24.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zeng, Jinzhe]的文章
[Zhang, Duo]的文章
[Lu, Denghui]的文章
百度学术
百度学术中相似的文章
[Zeng, Jinzhe]的文章
[Zhang, Duo]的文章
[Lu, Denghui]的文章
必应学术
必应学术中相似的文章
[Zeng, Jinzhe]的文章
[Zhang, Duo]的文章
[Lu, Denghui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。