CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Rotated Object Detection with Circular Gaussian Distribution
Xu, Hang1; Liu, Xinyuan2; Ma, Yike2; Zhu, Zunjie1,3; Wang, Shuai1,3; Yan, Chenggang1,3; Dai, Feng2
2023-08-01
发表期刊ELECTRONICS
卷号12期号:15页码:12
摘要Rotated object detection is a challenging task due to the difficulties of locating the rotated objects and separating them effectively from the background. For rotated object prediction, researchers have explored numerous regression-based and classification-based approaches to predict a rotation angle. However, both paradigms are constrained by some flaws that make it difficult to accurately predict angles, such as multi-solution and boundary issues, which limits the performance upper bound of detectors. To address these issues, we propose a circular Gaussian distribution (CGD)-based method for angular prediction. We convert the labeled angle into a discrete circular Gaussian distribution spanning a single minimal positive period, and let the model predict the distribution parameters instead of directly regressing or classifying the angle. To improve the overall efficiency of the detection model, we also design a rotated object detector based on CenterNet. Experimental results on various public datasets demonstrated the effectiveness and superior performances of our method. In particular, our approach achieves better results than state-of-the-art competitors, with improvements of 1.92% and 1.04% in terms of AP points on the HRSC2016 and DOTA datasets, respectively.
关键词rotated object detection circular Gaussian CenterNet CGD
DOI10.3390/electronics12153265
收录类别SCI
语种英语
资助项目National Key Ramp;D Program of China[2022YFD2001601] ; National Nature Science Foundation of China[62072438] ; National Nature Science Foundation of China[U21B2024] ; National Nature Science Foundation of China[61931008] ; National Nature Science Foundation of China[62071415] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA28040000] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA28120000] ; Natural Science Foundation of Shandong Province[ZR2021MF094] ; Key Ramp;D Plan of Shandong Province[2020CXGC010804] ; Central Leading Local Science and Technology Development Special Fund Project[YDZX2021122] ; Science amp; Technology Specific Projects in Agricultural High-Tech Industrial Demonstration Area of the Yellow River Delta[2022SZX11]
WOS研究方向Computer Science ; Engineering ; Physics
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Physics, Applied
WOS记录号WOS:001046145400001
出版者MDPI
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21338
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Dai, Feng
作者单位1.Hangzhou Dianzi Univ, Sch Automat, Hangzhou 310018, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100086, Peoples R China
3.Hangzhou Dianzi Univ, Lishui Inst, Lishui 323000, Peoples R China
推荐引用方式
GB/T 7714
Xu, Hang,Liu, Xinyuan,Ma, Yike,et al. Rotated Object Detection with Circular Gaussian Distribution[J]. ELECTRONICS,2023,12(15):12.
APA Xu, Hang.,Liu, Xinyuan.,Ma, Yike.,Zhu, Zunjie.,Wang, Shuai.,...&Dai, Feng.(2023).Rotated Object Detection with Circular Gaussian Distribution.ELECTRONICS,12(15),12.
MLA Xu, Hang,et al."Rotated Object Detection with Circular Gaussian Distribution".ELECTRONICS 12.15(2023):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Hang]的文章
[Liu, Xinyuan]的文章
[Ma, Yike]的文章
百度学术
百度学术中相似的文章
[Xu, Hang]的文章
[Liu, Xinyuan]的文章
[Ma, Yike]的文章
必应学术
必应学术中相似的文章
[Xu, Hang]的文章
[Liu, Xinyuan]的文章
[Ma, Yike]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。