CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
MetaFed: Federated Learning Among Federations With Cyclic Knowledge Distillation for Personalized Healthcare
Chen, Yiqiang1; Lu, Wang1; Qin, Xin1; Wang, Jindong2; Xie, Xing2
2023-07-28
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
页码12
摘要Federated learning (FL) has attracted increasing attention to building models without accessing raw user data, especially in healthcare. In real applications, different federations can seldom work together due to possible reasons such as data heterogeneity and distrust/inexistence of the central server. In this article, we propose a novel framework called MetaFed to facilitate trustworthy FL between different federations. obtains a personalized model for each federation without a central server via the proposed cyclic knowledge distillation. Specifically, treats each federation as a meta distribution and aggregates knowledge of each federation in a cyclic manner. The training is split into two parts: common knowledge accumulation and personalization. Comprehensive experiments on seven benchmarks demonstrate that without a server achieves better accuracy compared with state-of-the-art methods e.g., 10%+ accuracy improvement compared with the baseline for physical activity monitoring dataset (PAMAP2) with fewer communication costs. More importantly, shows remarkable performance in real-healthcare-related applications.
关键词Federated learning (FL) healthcare knowledge distillation (KD) personalization transfer learning
DOI10.1109/TNNLS.2023.3297103
收录类别SCI
语种英语
资助项目National Key Research and Development Plan of China[2021YFC2501202] ; Natural Science Foundation of China[61972383] ; Natural Science Foundation of China[62202455] ; Beijing Municipal Science and Technology Commission[Z221100002722009] ; Science Research Foundation of the Joint Laboratory Project on Digital Ophthalmology and Vision Science[SZYK202201]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:001043272300001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:24[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21328
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Yiqiang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Microsoft Res Asia, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Chen, Yiqiang,Lu, Wang,Qin, Xin,et al. MetaFed: Federated Learning Among Federations With Cyclic Knowledge Distillation for Personalized Healthcare[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2023:12.
APA Chen, Yiqiang,Lu, Wang,Qin, Xin,Wang, Jindong,&Xie, Xing.(2023).MetaFed: Federated Learning Among Federations With Cyclic Knowledge Distillation for Personalized Healthcare.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,12.
MLA Chen, Yiqiang,et al."MetaFed: Federated Learning Among Federations With Cyclic Knowledge Distillation for Personalized Healthcare".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2023):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Yiqiang]的文章
[Lu, Wang]的文章
[Qin, Xin]的文章
百度学术
百度学术中相似的文章
[Chen, Yiqiang]的文章
[Lu, Wang]的文章
[Qin, Xin]的文章
必应学术
必应学术中相似的文章
[Chen, Yiqiang]的文章
[Lu, Wang]的文章
[Qin, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。