Institute of Computing Technology, Chinese Academy IR
AD(2)S: Adaptive anomaly detection on sporadic data streams | |
Liu, Fengrui1,2; Wang, Yang1,2; Li, Zhenyu1,2; Guan, Hongtao1,2; Xie, Gaogang2,3 | |
2023-09-01 | |
发表期刊 | COMPUTER COMMUNICATIONS |
ISSN | 0140-3664 |
卷号 | 209页码:151-162 |
摘要 | With the widespread use of Internet applications, ensuring the quality and reliability of online services has become increasingly important. Therefore, anomaly detection methods play a critical role in identifying potential anomalies in the data streams of infrastructure systems and service applications. However, most of known detection methods have an underlying assumption that the data streams are continuous. In practice, we learn that many real-world data streams can be sporadic. It incurs particular challenges for the task of anomaly detection, for which the common preprocessing of downsampling on sporadic data can omit potential anomalies and delay alarms. In this paper, we propose an ensemble learning-based anomaly detection method on sporadic data streams named AD2S. It consists of two modules: a monitor module to continuously and adaptively determine the measure windows for observations, and a detection module that utilizes an isolation partition strategy to estimate the anomaly degree of each incoming observation. Based on experimental results on eight synthetic and public real-world datasets, our method outperforms other state-of-the-art methods with an average AUC score of 0.923. Additionally, our analysis demonstrates that the proposed method has constant amortized time and space complexity, enabling once detection within an average of 9.9 ms and maximum memory usage of 26.14 KB. The code of AD2S is open-sourced for further research. |
关键词 | Anomaly detection Sporadic data Data streams Quality of service |
DOI | 10.1016/j.comcom.2023.06.027 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Ramp;D Program of China[2020YFB1805603] ; CAS-Austria Joint Project[171111KYSB20200001] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:001040198100001 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/21314 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Xie, Gaogang |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China 2.Univ Chinese Acad Sci, Beijing, Peoples R China 3.Chinese Acad Sci, Comp Network Informat Ctr, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Fengrui,Wang, Yang,Li, Zhenyu,et al. AD(2)S: Adaptive anomaly detection on sporadic data streams[J]. COMPUTER COMMUNICATIONS,2023,209:151-162. |
APA | Liu, Fengrui,Wang, Yang,Li, Zhenyu,Guan, Hongtao,&Xie, Gaogang.(2023).AD(2)S: Adaptive anomaly detection on sporadic data streams.COMPUTER COMMUNICATIONS,209,151-162. |
MLA | Liu, Fengrui,et al."AD(2)S: Adaptive anomaly detection on sporadic data streams".COMPUTER COMMUNICATIONS 209(2023):151-162. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论