CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
AD(2)S: Adaptive anomaly detection on sporadic data streams
Liu, Fengrui1,2; Wang, Yang1,2; Li, Zhenyu1,2; Guan, Hongtao1,2; Xie, Gaogang2,3
2023-09-01
发表期刊COMPUTER COMMUNICATIONS
ISSN0140-3664
卷号209页码:151-162
摘要With the widespread use of Internet applications, ensuring the quality and reliability of online services has become increasingly important. Therefore, anomaly detection methods play a critical role in identifying potential anomalies in the data streams of infrastructure systems and service applications. However, most of known detection methods have an underlying assumption that the data streams are continuous. In practice, we learn that many real-world data streams can be sporadic. It incurs particular challenges for the task of anomaly detection, for which the common preprocessing of downsampling on sporadic data can omit potential anomalies and delay alarms. In this paper, we propose an ensemble learning-based anomaly detection method on sporadic data streams named AD2S. It consists of two modules: a monitor module to continuously and adaptively determine the measure windows for observations, and a detection module that utilizes an isolation partition strategy to estimate the anomaly degree of each incoming observation. Based on experimental results on eight synthetic and public real-world datasets, our method outperforms other state-of-the-art methods with an average AUC score of 0.923. Additionally, our analysis demonstrates that the proposed method has constant amortized time and space complexity, enabling once detection within an average of 9.9 ms and maximum memory usage of 26.14 KB. The code of AD2S is open-sourced for further research.
关键词Anomaly detection Sporadic data Data streams Quality of service
DOI10.1016/j.comcom.2023.06.027
收录类别SCI
语种英语
资助项目National Key Ramp;D Program of China[2020YFB1805603] ; CAS-Austria Joint Project[171111KYSB20200001]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001040198100001
出版者ELSEVIER
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21314
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xie, Gaogang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Chinese Acad Sci, Comp Network Informat Ctr, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liu, Fengrui,Wang, Yang,Li, Zhenyu,et al. AD(2)S: Adaptive anomaly detection on sporadic data streams[J]. COMPUTER COMMUNICATIONS,2023,209:151-162.
APA Liu, Fengrui,Wang, Yang,Li, Zhenyu,Guan, Hongtao,&Xie, Gaogang.(2023).AD(2)S: Adaptive anomaly detection on sporadic data streams.COMPUTER COMMUNICATIONS,209,151-162.
MLA Liu, Fengrui,et al."AD(2)S: Adaptive anomaly detection on sporadic data streams".COMPUTER COMMUNICATIONS 209(2023):151-162.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Fengrui]的文章
[Wang, Yang]的文章
[Li, Zhenyu]的文章
百度学术
百度学术中相似的文章
[Liu, Fengrui]的文章
[Wang, Yang]的文章
[Li, Zhenyu]的文章
必应学术
必应学术中相似的文章
[Liu, Fengrui]的文章
[Wang, Yang]的文章
[Li, Zhenyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。