CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Learning controllable elements oriented representations for reinforcement learning
Yi, Qi1,2,3; Zhang, Rui2,3; Peng, Shaohui2,3,4; Guo, Jiaming2,3,4; Hu, Xing2,3; Du, Zidong2,3; Guo, Qi2; Chen, Ruizhi5; Li, Ling4,5; Chen, Yunji2,4
2023-09-07
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号549页码:13
摘要Deep Reinforcement Learning (deep RL) has been successfully applied to solve various decision-making problems in recent years. However, the observations in many real-world tasks are often high dimensional and include much task-irrelevant information, limiting the applications of RL algorithms. To tackle this problem, we propose LCER, a representation learning method that aims to provide RL algorithms with compact and sufficient descriptions of the original observations. Specifically, LCER trains representations to retain the controllable elements of the environment, which can reflect the action-related environment dynamics and thus are likely to be task-relevant. We demonstrate the strength of LCER on the DMControl Suite, proving that it can achieve state-of-the-art performance. LCER enables the pixel -based SAC to outperform state-based SAC on the DMControl 100 K benchmark, showing that the obtained representations can match the oracle descriptions (i.e. the physical states) of the environment. We also carry out experiments to show that LCER can efficiently filter out various distractions, especially when those distractions are not controllable.& COPY; 2023 Elsevier B.V. All rights reserved.
关键词Reinforcement learning Representation learning
DOI10.1016/j.neucom.2023.126455
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFA0700900] ; NSF of China[61925208] ; NSF of China[62102399] ; NSF of China[62002338] ; NSF of China[U19B2019] ; NSF of China[61732020] ; Beijing Academy of Artificial Intelligence (BAAI) ; CAS Project for Young Scientists in Basic Research[YSBR-029] ; Youth Innovation Promotion Association CAS and Xplore Prize
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001035238900001
出版者ELSEVIER
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21302
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yi, Qi
作者单位1.Univ Sci & Technol China, Hefei, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, SKL Processors, Beijing, Peoples R China
3.Cambricon Technol, Beijing, Peoples R China
4.Univ Chinese Acad Sci, Beijing, Peoples R China
5.Chinese Acad Sci, Inst Software, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Yi, Qi,Zhang, Rui,Peng, Shaohui,et al. Learning controllable elements oriented representations for reinforcement learning[J]. NEUROCOMPUTING,2023,549:13.
APA Yi, Qi.,Zhang, Rui.,Peng, Shaohui.,Guo, Jiaming.,Hu, Xing.,...&Chen, Yunji.(2023).Learning controllable elements oriented representations for reinforcement learning.NEUROCOMPUTING,549,13.
MLA Yi, Qi,et al."Learning controllable elements oriented representations for reinforcement learning".NEUROCOMPUTING 549(2023):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yi, Qi]的文章
[Zhang, Rui]的文章
[Peng, Shaohui]的文章
百度学术
百度学术中相似的文章
[Yi, Qi]的文章
[Zhang, Rui]的文章
[Peng, Shaohui]的文章
必应学术
必应学术中相似的文章
[Yi, Qi]的文章
[Zhang, Rui]的文章
[Peng, Shaohui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。