CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Node classification across networks via category-level domain adaptive network embedding
Shi, Boshen1,2; Wang, Yongqing1; Shao, Jiangli1,2; Shen, Huawei1; Li, Yangyang3,4; Cheng, Xueqi1
2023-07-30
发表期刊KNOWLEDGE AND INFORMATION SYSTEMS
ISSN0219-1377
页码24
摘要To improve the performance of classifying nodes on unlabeled or scarcely-labeled networks, the task of node classification across networks is proposed for transferring knowledge from similar networks with rich labels. As data distribution shift exists across networks, domain adaptive network embedding is proposed to overcome such challenge by learning network-invariant and discriminative node embeddings, in which domain adaptation technique is applied to network embedding for reducing domain discrepancy. However, existing works merely discuss category-level domain discrepancy which is crucial to better adaptation and classification. In this paper, we propose category-level domain adaptive network embedding. The key idea is minimizing intra-class domain discrepancy and maximizing inter-class domain discrepancy between source and target networks simultaneously. To further enhance classification performance on target network, we reduce embedding variation inside each class and enlarge it between different classes. Graph attention network is adopted for learning network embeddings. In addition, a novel pseudo-labeling strategy for target network is developed to better compute category-level information. Theoretical analysis guarantees the effectiveness of our model. Furthermore, extensive experiments on real-world datasets show that our model achieves the state-of-art performance, in particular, outperforming existing domain adaptive network embedding models by up to 32%.
关键词Node classification across networks Graph neural networks Domain adaptation Transfer learning
DOI10.1007/s10115-023-01942-2
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[U21B2046] ; China Postdoctoral Science Foundation[2022M713206]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:001039402200001
出版者SPRINGER LONDON LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21288
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shi, Boshen; Wang, Yongqing
作者单位1.Chinese Acad Sci, Inst Comp Technol, Data Intelligence Syst Res Ctr, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
3.CAEIT, Natl Engn Res Ctr Risk Percept & Prevent NEL RPP, Beijing 100041, Peoples R China
4.Acad Cyber, Beijing 100085, Peoples R China
推荐引用方式
GB/T 7714
Shi, Boshen,Wang, Yongqing,Shao, Jiangli,et al. Node classification across networks via category-level domain adaptive network embedding[J]. KNOWLEDGE AND INFORMATION SYSTEMS,2023:24.
APA Shi, Boshen,Wang, Yongqing,Shao, Jiangli,Shen, Huawei,Li, Yangyang,&Cheng, Xueqi.(2023).Node classification across networks via category-level domain adaptive network embedding.KNOWLEDGE AND INFORMATION SYSTEMS,24.
MLA Shi, Boshen,et al."Node classification across networks via category-level domain adaptive network embedding".KNOWLEDGE AND INFORMATION SYSTEMS (2023):24.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shi, Boshen]的文章
[Wang, Yongqing]的文章
[Shao, Jiangli]的文章
百度学术
百度学术中相似的文章
[Shi, Boshen]的文章
[Wang, Yongqing]的文章
[Shao, Jiangli]的文章
必应学术
必应学术中相似的文章
[Shi, Boshen]的文章
[Wang, Yongqing]的文章
[Shao, Jiangli]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。