CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DOE: database offloading engine for accelerating SQL processing
Kong, Hao1,2; Lu, Wenyan1,3; Chen, Yan3; Wu, Jingya1,3; Zhang, Yu3; Yan, Guihai1,3; Li, Xiaowei1
2023-05-13
发表期刊DISTRIBUTED AND PARALLEL DATABASES
ISSN0926-8782
页码25
摘要The CPU-Accelerator heterogeneous systems have demonstrated performance and efficiency benefits on DBMSs. However, the CPU-Cache-DRAM architecture can not fully utilize the bandwidth of DRAMs such that in-memory approach get limited improvement. To overcome this drawback, it is non-trivial to customize efficient domain-specific accelerators and efficiently shuttle data between the host memory space and accelerator. But even if high-performance accelerators are available for DBMS, it is challenging to integrate the software with accelerator non-intrusively. To address these problems, we propose a hardware-software co-designed system, database offloading engine (DOE), which contains hardware accelerator architecture-Conflux for effective SQL operation offloading, and a software DOE programming platform-DP2 for application integration and seamless harness of the computing power. We subtly partition each well-known relational operator, such as filter, join, group by, aggregate, and sort, and dynamically map these operators on multiple kernels in parallel. The DOE kernels work in streaming processing mode, over which the microarchitecture aggressively exploits data parallelism and memory bandwidth. The experiment results show that DOE achieves more than 100x and 10x performance improvement compared with PostgreSQL and MonetDB respectively.
关键词Database Hardware software co-design Heterogeneous system Analytic query processing
DOI10.1007/s10619-023-07427-z
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[62002340] ; National Natural Science Foundation of China (NSFC)[61872336] ; National Natural Science Foundation of China (NSFC)[62090020] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB44030100] ; Youth Innovation Promotion Association CAS[Y201923]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:000987909800001
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21196
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Lu, Wenyan; Yan, Guihai; Li, Xiaowei
作者单位1.Inst Comp Technol, Chinese Acad Sci, State Key Lab Proc, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.YUSUR Technol Co Ltd, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Kong, Hao,Lu, Wenyan,Chen, Yan,et al. DOE: database offloading engine for accelerating SQL processing[J]. DISTRIBUTED AND PARALLEL DATABASES,2023:25.
APA Kong, Hao.,Lu, Wenyan.,Chen, Yan.,Wu, Jingya.,Zhang, Yu.,...&Li, Xiaowei.(2023).DOE: database offloading engine for accelerating SQL processing.DISTRIBUTED AND PARALLEL DATABASES,25.
MLA Kong, Hao,et al."DOE: database offloading engine for accelerating SQL processing".DISTRIBUTED AND PARALLEL DATABASES (2023):25.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kong, Hao]的文章
[Lu, Wenyan]的文章
[Chen, Yan]的文章
百度学术
百度学术中相似的文章
[Kong, Hao]的文章
[Lu, Wenyan]的文章
[Chen, Yan]的文章
必应学术
必应学术中相似的文章
[Kong, Hao]的文章
[Lu, Wenyan]的文章
[Chen, Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。