CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
TS-STNN: Spatial-temporal neural network based on tree structure for traffic flow prediction
Lv, Yang1; Lv, Zhiqiang1,2; Cheng, Zesheng1; Zhu, Zhanqi3; Rashidi, Taha Hossein4
2023-09-01
发表期刊TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
ISSN1366-5545
卷号177页码:16
摘要Traffic flow prediction effectively supports the sustainable expansion and operation of modern transport networks, one of the emerging research areas in intelligent transportation systems. Currently, most common traffic flow prediction methods use deep learning spatial-temporal models based on graph convolution theory, which cannot deeply explore the spatial hierarchy and directional information of traffic flow data due to their structural characteristics. To address this problem, a spatial-temporal neural network based on tree structure (TS-STNN) is created to anticipate future traffic flow at a specific time at a target location. The principle of this method is to use the characteristics of the tree structure to construct a plane tree matrix with hierarchical and directional features, which is finally fused into a spatial tree matrix to extract the spatial information. Meanwhile, the temporal correlation of traffic flow data in the traffic network is analyzed by TS-STNN using Gated Recurrent Units (GRUs). By comparing with the existing baseline methods, it is verified that the TS-STNN model has high prediction accuracy in both Random Uniformly Distributed (RND) and Small-Scale Aggregation of Node Distributed (SSAND) scenarios. It is further demonstrated through ablation experiments that the developed tree convolution module greatly impacts the TS-STNN accuracy.
DOI10.1016/j.tre.2023.103251
收录类别SCI
语种英语
WOS研究方向Business & Economics ; Engineering ; Operations Research & Management Science ; Transportation
WOS类目Economics ; Engineering, Civil ; Operations Research & Management Science ; Transportation ; Transportation Science & Technology
WOS记录号WOS:001067594100001
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21166
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cheng, Zesheng
作者单位1.Qingdao Univ, Coll Comp Sci & Technol, Qingdao, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Vanderbilt Univ, Sch Engn, Nashville, TN USA
4.UNSW, Sch Civil & Environm Engn, Res Ctr Integrated Transport Innovat rCITI, Sydney, Australia
推荐引用方式
GB/T 7714
Lv, Yang,Lv, Zhiqiang,Cheng, Zesheng,et al. TS-STNN: Spatial-temporal neural network based on tree structure for traffic flow prediction[J]. TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW,2023,177:16.
APA Lv, Yang,Lv, Zhiqiang,Cheng, Zesheng,Zhu, Zhanqi,&Rashidi, Taha Hossein.(2023).TS-STNN: Spatial-temporal neural network based on tree structure for traffic flow prediction.TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW,177,16.
MLA Lv, Yang,et al."TS-STNN: Spatial-temporal neural network based on tree structure for traffic flow prediction".TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW 177(2023):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lv, Yang]的文章
[Lv, Zhiqiang]的文章
[Cheng, Zesheng]的文章
百度学术
百度学术中相似的文章
[Lv, Yang]的文章
[Lv, Zhiqiang]的文章
[Cheng, Zesheng]的文章
必应学术
必应学术中相似的文章
[Lv, Yang]的文章
[Lv, Zhiqiang]的文章
[Cheng, Zesheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。