CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Adversarial camouflage for node injection attack on graphs
Tao, Shuchang1,3; Cao, Qi1; Shen, Huawei1,3; Wu, Yunfan1,3; Hou, Liang1,3; Sun, Fei1; Cheng, Xueqi2,3
2023-11-01
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号649页码:14
摘要Node injection attacks on Graph Neural Networks (GNNs) have received increasing attention recently, due to their ability to degrade GNN performance with high attack success rates. However, our study indicates that these attacks often fail in practical scenarios, since defense/detection methods can easily identify and remove the injected nodes. To address this, we devote to camouflage node injection attack, making injected nodes appear normal and imperceptible to defense/detection methods. Unfortunately, the non-Euclidean structure of graph data and the lack of intuitive prior present great challenges to the formalization, implementation, and evaluation of camouflage. In this paper, we first propose and define camouflage as distribution similarity between ego networks of injected nodes and normal nodes. Then for implementation, we propose an adversarial CAmouflage framework for Node injection Attack, namely CANA, to improve attack performance under defense/detection methods in practical scenarios. A novel camouflage metric is further designed under the guide of distribution similarity. Extensive experiments demonstrate that CANA can significantly improve the attack performance under defense/detection methods with higher camouflage or imperceptibility. This work urges us to raise awareness of the security vulnerabilities of GNNs in practical applications.
关键词Adversarial camouflage Node injection attack Adversarial attack Graph neural networks
DOI10.1016/j.ins.2023.119611
收录类别SCI
语种英语
资助项目National Key Ramp;D Program of China[2022YFB3103700] ; National Key Ramp;D Program of China[2022YFB3103701] ; National Natural Science Foundation of China[62102402] ; National Natural Science Foundation of China[62272125] ; National Natural Science Foundation of China[U21B2046] ; Beijing Academy of Artificial Intelligence (BAAI)
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:001073549100001
出版者ELSEVIER SCIENCE INC
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21156
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cao, Qi; Shen, Huawei
作者单位1.Chinese Acad Sci, Data Intelligence Syst Res Ctr, Inst Comp Technol, Beijing, Peoples R China
2.Chinese Acad Sci, CAS Key Lab Network Data Sci & Technol, Inst Comp Technol, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Tao, Shuchang,Cao, Qi,Shen, Huawei,et al. Adversarial camouflage for node injection attack on graphs[J]. INFORMATION SCIENCES,2023,649:14.
APA Tao, Shuchang.,Cao, Qi.,Shen, Huawei.,Wu, Yunfan.,Hou, Liang.,...&Cheng, Xueqi.(2023).Adversarial camouflage for node injection attack on graphs.INFORMATION SCIENCES,649,14.
MLA Tao, Shuchang,et al."Adversarial camouflage for node injection attack on graphs".INFORMATION SCIENCES 649(2023):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tao, Shuchang]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
百度学术
百度学术中相似的文章
[Tao, Shuchang]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
必应学术
必应学术中相似的文章
[Tao, Shuchang]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。