CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DyTSCL: Dynamic graph representation via tempo-structural contrastive learning
Li, Jianian1; Bao, Peng1; Yan, Rong1; Shen, Huawei2
2023-11-01
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号556页码:8
摘要With the massive growth of graph-structured data, extensive research has focused on graph representation learning. Recently, graph representation learning frameworks have made great efforts toward dynamic graph learning. Although dynamic graph methods have achieved impressive results, they require labeled data for model training. The contrastive learning does not require human annotation to complete model training and has been shown to be extremely competitive in visual representation learning and natural language processing. In this paper, we propose a novel Dynamic graph representation framework via Tempo-Structural Contrastive Learning, DyTSCL, which trains the model by identifying three different subgraphs as a task, named Tempo-Structural subgraph, Non-Temporal subgraph and Non-Structural subgraph. Moreover, we propose a Tempo-Structural encoder, which aggregates the temporal and structural information. Finally, a TempoStructural contrastive learning module is proposed to maximize the consistency between node and subgraph in temporal and structural perspectives, respectively. To demonstrate the effectiveness of DyTSCL, we validate DyTSCL by applying it on the Wikipedia, Reddit and Mooc datasets, which show that DyTSCL can significantly outperform the existing approaches.
关键词Graph representation learning Contrastive learning Dynamic graph Tempo-structural information
DOI10.1016/j.neucom.2023.126660
收录类别SCI
语种英语
资助项目Fundamental Research Funds for the Central Universities, China[62272032] ; National Natural Science Foundation of China[U21B2046] ; CCF-Tencent Open Research Fund, China, CAAI- Huawei MindSpore Open Fund, China ; CCF-NSFOCUS Kunpeng Fund, China ; [2022JBMC001]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001068763700001
出版者ELSEVIER
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21144
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Bao, Peng
作者单位1.Beijing Jiaotong Univ, Sch Software Engn, Beijing 100081, Peoples R China
2.Chinese Acad Sci, Data Intelligence Syst Res Ctr, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Jianian,Bao, Peng,Yan, Rong,et al. DyTSCL: Dynamic graph representation via tempo-structural contrastive learning[J]. NEUROCOMPUTING,2023,556:8.
APA Li, Jianian,Bao, Peng,Yan, Rong,&Shen, Huawei.(2023).DyTSCL: Dynamic graph representation via tempo-structural contrastive learning.NEUROCOMPUTING,556,8.
MLA Li, Jianian,et al."DyTSCL: Dynamic graph representation via tempo-structural contrastive learning".NEUROCOMPUTING 556(2023):8.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Jianian]的文章
[Bao, Peng]的文章
[Yan, Rong]的文章
百度学术
百度学术中相似的文章
[Li, Jianian]的文章
[Bao, Peng]的文章
[Yan, Rong]的文章
必应学术
必应学术中相似的文章
[Li, Jianian]的文章
[Bao, Peng]的文章
[Yan, Rong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。