CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Asymptotically Optimal Circuit Depth for Quantum State Preparation and General Unitary Synthesis
Sun, Xiaoming1,2; Tian, Guojing1,2; Yang, Shuai1,2; Yuan, Pei3; Zhang, Shengyu3
2023-10-01
发表期刊IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
ISSN0278-0070
卷号42期号:10页码:3301-3314
摘要The quantum state preparation problem aims to prepare an n-qubit quantum state vertical bar psi(v)>> = Sigma(2n-1)(k=0)v(k)vertical bar k > from the initial state vertical bar 0(circle times n), for a given unit vector v = (v(0), v(1), v(2),..., v(2)(n-1))T is an element of C-2n with parallel to v parallel to(2) = 1. The problem is of fundamental importance in quantum algorithm design, Hamiltonian simulation and quantum machine learning, yet its circuit depth complexity remains open when ancillary qubits are available. In this article, we study quantum circuits when there are m ancillary qubits available. We construct, for any m, circuits that can prepare vertical bar v parallel to in depth O((2n/[m + n]) + n) and size O(2(n)), achieving the optimal value for both measures simultaneously. These results also imply a depth complexity of (4n/[m + n]) for quantum circuits implementing a general nqubit unitary for any m = O(2(n)/n) number of ancillary qubits. This resolves the depth complexity for circuits without ancillary qubits. And for circuits with exponentially many ancillary qubits, our result quadratically improves the currently best upper bound of O(4n) to (2n). Our circuits are deterministic, prepare the state and carry out the unitary precisely, utilize the ancillary qubits tightly and the depths are optimal in a wide parameter regime. The results can be viewed as (optimal) time-space tradeoff bounds, which is not only theoretically interesting, but also practically relevant in the current trend that the number of qubits starts to take off, by showing a way to use a large number of qubits to compensate the short qubit lifetime.
关键词Circuit depth depth-space tradeoff quantum circuit state preparation unitary synthesis
DOI10.1109/TCAD.2023.3244885
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61832003] ; Priority Research Program of Chinese Academy of Sciences[62272441] ; [XDB28000000]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号WOS:001071466500011
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:30[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21130
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Sun, Xiaoming; Tian, Guojing; Yang, Shuai; Yuan, Pei; Zhang, Shengyu
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
3.Tencent, Tencent Quantum Lab, Shenzhen 518057, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Sun, Xiaoming,Tian, Guojing,Yang, Shuai,et al. Asymptotically Optimal Circuit Depth for Quantum State Preparation and General Unitary Synthesis[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2023,42(10):3301-3314.
APA Sun, Xiaoming,Tian, Guojing,Yang, Shuai,Yuan, Pei,&Zhang, Shengyu.(2023).Asymptotically Optimal Circuit Depth for Quantum State Preparation and General Unitary Synthesis.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,42(10),3301-3314.
MLA Sun, Xiaoming,et al."Asymptotically Optimal Circuit Depth for Quantum State Preparation and General Unitary Synthesis".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 42.10(2023):3301-3314.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Xiaoming]的文章
[Tian, Guojing]的文章
[Yang, Shuai]的文章
百度学术
百度学术中相似的文章
[Sun, Xiaoming]的文章
[Tian, Guojing]的文章
[Yang, Shuai]的文章
必应学术
必应学术中相似的文章
[Sun, Xiaoming]的文章
[Tian, Guojing]的文章
[Yang, Shuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。