CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DRS: A deep reinforcement learning enhanced Kubernetes scheduler for microservice-based system
Jian, Zhaolong1; Xie, Xueshuo1,2; Fang, Yaozheng1; Jiang, Yibing1; Lu, Ye3; Dash, Ankan4; Li, Tao1,2; Wang, Guiling4
2023-10-25
发表期刊SOFTWARE-PRACTICE & EXPERIENCE
ISSN0038-0644
页码25
摘要Recently, Kubernetes is widely used to manage and schedule the resources of microservices in cloud-native distributed applications, as the most famous container orchestration framework. However, Kubernetes preferentially schedules microservices to nodes with rich and balanced CPU and memory resources on a single node. The native scheduler of Kubernetes, called Kube-scheduler, may cause resource fragmentation and decrease resource utilization. In this paper, we propose a deep reinforcement learning enhanced Kubernetes scheduler named DRS. We initially frame the Kubernetes scheduling problem as a Markov decision process with intricately designed state, action, and reward structures in an effort to increase resource usage and decrease load imbalance. Then, we design and implement DRS mointor to perceive six parameters concerning resource utilization and create a thorough picture of all available resources globally. Finally, DRS can automatically learn the scheduling policy through interaction with the Kubernetes cluster, without relying on expert knowledge about workload and cluster status. We implement a prototype of DRS in a Kubernetes cluster with five nodes and evaluate its performance. Experimental results highlight that DRS overcomes the shortcomings of Kube-scheduler and achieves the expected scheduling target with three workloads. With only 3.27% CPU overhead and 0.648% communication delay, DRS outperforms Kube-scheduler by 27.29% in terms of resource utilization and reduces load imbalance by 2.90 times on average.
关键词deep reinforcement learning Kubernetes scheduler microservice scheduling resource awareness
DOI10.1002/spe.3284
收录类别SCI
语种英语
资助项目This work is partially supported by the National Key Research and Development Program of China (2018YFB2100304), National Natural Science Foundation (62272248), the Open Project Fund of State Key Laboratory of Computer Architecture, Institute of Computing[2018YFB2100304] ; National Key Research and Development Program of China[62272248] ; National Natural Science Foundation[CARCH201905] ; National Natural Science Foundation[CARCHA202108] ; National Natural Science Foundation[2021KF0AB04] ; Open Project Fund of State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences[2022BKY028] ; Tianjin Graduate Scientific Research Innovation Project
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001087072100001
出版者WILEY
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/21100
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Tao
作者单位1.Nankai Univ, Coll Comp Sci, Tianjin, Peoples R China
2.Chinese Acad Sci, State Key Lab Comp Architecture, Inst Comp Technol, Beijing, Peoples R China
3.Nankai Univ, Coll Cyber Sci, Tianjin, Peoples R China
4.New Jersey Inst Technol, Dept Comp Sci, Newark, NJ USA
推荐引用方式
GB/T 7714
Jian, Zhaolong,Xie, Xueshuo,Fang, Yaozheng,et al. DRS: A deep reinforcement learning enhanced Kubernetes scheduler for microservice-based system[J]. SOFTWARE-PRACTICE & EXPERIENCE,2023:25.
APA Jian, Zhaolong.,Xie, Xueshuo.,Fang, Yaozheng.,Jiang, Yibing.,Lu, Ye.,...&Wang, Guiling.(2023).DRS: A deep reinforcement learning enhanced Kubernetes scheduler for microservice-based system.SOFTWARE-PRACTICE & EXPERIENCE,25.
MLA Jian, Zhaolong,et al."DRS: A deep reinforcement learning enhanced Kubernetes scheduler for microservice-based system".SOFTWARE-PRACTICE & EXPERIENCE (2023):25.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jian, Zhaolong]的文章
[Xie, Xueshuo]的文章
[Fang, Yaozheng]的文章
百度学术
百度学术中相似的文章
[Jian, Zhaolong]的文章
[Xie, Xueshuo]的文章
[Fang, Yaozheng]的文章
必应学术
必应学术中相似的文章
[Jian, Zhaolong]的文章
[Xie, Xueshuo]的文章
[Fang, Yaozheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。