CSpace  > 中国科学院计算技术研究所期刊论文
JBNN: A Hardware Design for Binarized Neural Networks Using Single-Flux-Quantum Circuits
Fu, Rongliang1; Huang, Junying2; Wu, Haibin2; Ye, Xiaochun2; Fan, Dongrui2; Ho, Tsung-Yi1
2022-12-01
发表期刊IEEE TRANSACTIONS ON COMPUTERS
ISSN0018-9340
卷号71期号:12页码:3203-3214
摘要As a high-performance application of low-temperature superconductivity, superconducting single-flux-quantum (SFQ) circuits have high speed and low-power consumption characteristics, which have recently received extensive attention, especially in the field of neural network inference accelerations. Despite these promising advantages, they are still limited by storage capacity and manufacture reliability, making them unfriendly for feedback loops and very large-scale circuits. The Binarized Neural Network (BNN), with minimal memory requirements and no reliance on multiplication, is undoubtedly an attractive candidate for implementing inference hardware using SFQ circuits. This work presents the first SFQ-based Binarized Neural Network inference accelerator, namely JBNN, with a new representation to binarize weights and activation variables. Every SFQ gate is essentially a pipeline stage, making conventional design methods of the accumulator unsuitable for SFQ circuits. So an SFQ-based accumulative parallel counter using SFQ logic cells including T1, OR, and AND is designed to realize the accumulation, where the data size is reduced to a quarter after passing the XNOR column and the AU layer, largely declining the hardware cost. Our evaluation shows that the proposed design outperforms a cryogenic CMOS-based BNN accelerator design running at 77K by 70.92 times while maintaining 97.89% accuracy on the MNIST benchmark dataset. Without the cooling cost, the power efficiency increases up to 929.18 times.
关键词Superconducting single-flux-quantum accelerator binarized neural network
DOI10.1109/TC.2022.3215085
收录类别SCI
语种英语
资助项目Hong Kong Jockey Club Charities Trust ; Chinese Academy of Sciences[XDA18000000] ; National Natural Science Foundation of China[61732018] ; National Natural Science Foundation of China[61872335] ; Youth Innovation Promotion Association CAS
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号WOS:000886309300012
出版者IEEE COMPUTER SOC
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20315
专题中国科学院计算技术研究所期刊论文
通讯作者Fu, Rongliang
作者单位1.Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong 999077, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, SKLP, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Fu, Rongliang,Huang, Junying,Wu, Haibin,et al. JBNN: A Hardware Design for Binarized Neural Networks Using Single-Flux-Quantum Circuits[J]. IEEE TRANSACTIONS ON COMPUTERS,2022,71(12):3203-3214.
APA Fu, Rongliang,Huang, Junying,Wu, Haibin,Ye, Xiaochun,Fan, Dongrui,&Ho, Tsung-Yi.(2022).JBNN: A Hardware Design for Binarized Neural Networks Using Single-Flux-Quantum Circuits.IEEE TRANSACTIONS ON COMPUTERS,71(12),3203-3214.
MLA Fu, Rongliang,et al."JBNN: A Hardware Design for Binarized Neural Networks Using Single-Flux-Quantum Circuits".IEEE TRANSACTIONS ON COMPUTERS 71.12(2022):3203-3214.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fu, Rongliang]的文章
[Huang, Junying]的文章
[Wu, Haibin]的文章
百度学术
百度学术中相似的文章
[Fu, Rongliang]的文章
[Huang, Junying]的文章
[Wu, Haibin]的文章
必应学术
必应学术中相似的文章
[Fu, Rongliang]的文章
[Huang, Junying]的文章
[Wu, Haibin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。