CSpace  > 中国科学院计算技术研究所期刊论文
An Application-oblivious Memory Scheduling System for DNN Accelerators
Li, Jiansong1; Wang, Xueying2,3; Chen, Xiaobing2,3; Li, Guangli2,3; Dong, Xiao4; Zhao, Peng5; Yu, Xianzhi5; Yang, Yongxin2,3; Cao, Wei2,3; Liu, Lei2,3; Feng, Xiaobing2,3
2022-12-01
发表期刊ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION
ISSN1544-3566
卷号19期号:4页码:26
摘要Deep Neural Networks (DNNs) tend to go deeper and wider, which poses a significant challenge to the training of DNNs, due to the limited memory capacity of DNN accelerators. Existing solutions for memory-efficient DNN training are densely coupled with the application features of DNN workloads, e.g., layer structures or computational graphs of DNNs are necessary for these solutions. This would result in weak versatility for DNNs with sophisticated layer structures or complicated computation graphs. These schemes usually need to be re-implemented or re-adapted due to the new layer structures or the unusual operators in the computational graphs introduced by these DNNs. In this article, we review the memory pressure issues of DNN training from the perspective of runtime systems and model the memory access behaviors of DNN workloads. We identify the iterative, regularity, and extremalization properties of memory access patterns for DNN workloads. Based on these observations, we propose AppObMem, an application-oblivious memory scheduling system. AppObMem automatically traces the memory behaviors of DNN workloads and schedules the memory swapping to reduce the memory pressure of the device accelerators without the perception of high-level information of layer structures or computation graphs. Evaluations on a variety ofDNNmodels showthat, AppObMem obtains 40-60% memory savings with acceptable performance loss. AppObMem is also competitive with other open sourced SOTA schemes.
关键词Deep learning memory scheduling runtime system DNN accelerators
DOI10.1145/3535355
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61872043]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods
WOS记录号WOS:000893255000001
出版者ASSOC COMPUTING MACHINERY
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20223
专题中国科学院计算技术研究所期刊论文
通讯作者Li, Guangli
作者单位1.Huawei Galois Lab, Beijing, Peoples R China
2.Chinese Acad Sci, State Key Lab Comp Architecture, Inst Comp Technol, 6 Kexueyuan South Rd, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Comp Sci & Technol, 19 A Yuquan Rd, Beijing 100049, Peoples R China
4.NVIDIA Corp, Shanghai, Peoples R China
5.Huawei 2012 Lab, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Li, Jiansong,Wang, Xueying,Chen, Xiaobing,et al. An Application-oblivious Memory Scheduling System for DNN Accelerators[J]. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION,2022,19(4):26.
APA Li, Jiansong.,Wang, Xueying.,Chen, Xiaobing.,Li, Guangli.,Dong, Xiao.,...&Feng, Xiaobing.(2022).An Application-oblivious Memory Scheduling System for DNN Accelerators.ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION,19(4),26.
MLA Li, Jiansong,et al."An Application-oblivious Memory Scheduling System for DNN Accelerators".ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION 19.4(2022):26.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Jiansong]的文章
[Wang, Xueying]的文章
[Chen, Xiaobing]的文章
百度学术
百度学术中相似的文章
[Li, Jiansong]的文章
[Wang, Xueying]的文章
[Chen, Xiaobing]的文章
必应学术
必应学术中相似的文章
[Li, Jiansong]的文章
[Wang, Xueying]的文章
[Chen, Xiaobing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。