CSpace  > 中国科学院计算技术研究所期刊论文
Multi-View Matrix Factorization for Sparse Mobile Crowdsensing
Li, Xiaocan1; Xie, Kun1; Xie, Gaogang2; Li, Kenli1; Cao, Jiannong3; Zhang, Dafang1; Wen, Jigang4
2022-12-15
发表期刊IEEE INTERNET OF THINGS JOURNAL
ISSN2327-4662
卷号9期号:24页码:25767-25779
摘要Mobile crowdsensing (MCS) has become a new paradigm for the environment sensing. However, the sparse sensory data prevent the practical and large-scale deployment of MCS systems. Recent studies have demonstrated that the matrix factorization is an effective technique which can estimate the missing sensory data entries based on a small set of observed data entries. However, there could be multiple sensory data sets with each regarded as a different view on the environment. Applying current matrix factorization individually to each data set, the recovery performance will be low as some data sets do not have enough observed data entries thus enough information. By partitioning the parameters involved in matrix factorization, we design some novel regularizations to encode the similarities among different data sets and specific knowledge in the single data set. Based on the regularizations, we propose one basic multiview matrix factorization (MVMF) model and one neural MVMF (NMVMF) model to combine multiple sensory data sets to mutually reinforce the estimation of each single data set. The extensive experimental results demonstrate that, with the help of other data sets, our models can estimate the missing entries in the data set with a very low sampling ratio accurately while the other five baseline algorithms cannot.
关键词Sparse matrices Sensors Data models Estimation Indexes Air quality Task analysis Matrix factorization mobile crowdsensing (MCS)
DOI10.1109/JIOT.2022.3198081
收录类别SCI
语种英语
资助项目National ScienceFoundation for Distinguished Young Scholars[62025201] ; National Natural Science Foundation of China[62102138] ; National Natural Science Foundation of China[61972144] ; National Natural Science Foundation of China[61976087] ; China NationalPostdoctoral Program for Innovative Talents[BX20200120] ; China Postdoctoral Science Foundation[2020M682556] ; Hunan Provincial Natural Science Foundation of China[2021JJ40115] ; Huawei Innovation Project[TC20201201003]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000895792600083
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20200
专题中国科学院计算技术研究所期刊论文
通讯作者Xie, Kun
作者单位1.Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410012, Peoples R China
2.Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100045, Peoples R China
3.Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100045, Peoples R China
推荐引用方式
GB/T 7714
Li, Xiaocan,Xie, Kun,Xie, Gaogang,et al. Multi-View Matrix Factorization for Sparse Mobile Crowdsensing[J]. IEEE INTERNET OF THINGS JOURNAL,2022,9(24):25767-25779.
APA Li, Xiaocan.,Xie, Kun.,Xie, Gaogang.,Li, Kenli.,Cao, Jiannong.,...&Wen, Jigang.(2022).Multi-View Matrix Factorization for Sparse Mobile Crowdsensing.IEEE INTERNET OF THINGS JOURNAL,9(24),25767-25779.
MLA Li, Xiaocan,et al."Multi-View Matrix Factorization for Sparse Mobile Crowdsensing".IEEE INTERNET OF THINGS JOURNAL 9.24(2022):25767-25779.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Xiaocan]的文章
[Xie, Kun]的文章
[Xie, Gaogang]的文章
百度学术
百度学术中相似的文章
[Li, Xiaocan]的文章
[Xie, Kun]的文章
[Xie, Gaogang]的文章
必应学术
必应学术中相似的文章
[Li, Xiaocan]的文章
[Xie, Kun]的文章
[Xie, Gaogang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。