CSpace  > 中国科学院计算技术研究所期刊论文
Link Prediction on N-ary Relational Data Based on Relatedness Evaluation
Guan, Saiping1,2; Jin, Xiaolong1,2; Guo, Jiafeng1,2; Wang, Yuanzhuo None1,2; Cheng, Xueqi1,2
2023
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
ISSN1041-4347
卷号35期号:1页码:672-685
摘要With the overwhelming popularity of Knowledge Graphs (KGs), researchers have poured attention to link prediction to fill in missing facts for a long time. However, they mainly focus on link prediction on binary relational data, where facts are usually represented as triples in the form of (head entity, relation, tail entity). In practice, n-ary relational facts are also ubiquitous. When encountering such facts, existing studies usually decompose them into triples by introducing a multitude of auxiliary virtual entities and additional triples. These conversions result in the complexity of carrying out link prediction on n-ary relational data. It has even proven that they may cause loss of structure information. To overcome these problems, in this paper, we represent each n-ary relational fact as a set of its role and role-value pairs. We then propose a method called NaLP to conduct link prediction on n-ary relational data, which explicitly models the relatedness of all the role and role-value pairs in an n-ary relational fact. We further extend NaLP by introducing type constraints of roles and role-values without any external type-specific supervision, and proposing a more reasonable negative sampling mechanism. Experimental results validate the effectiveness and merits of the proposed methods.
关键词Link prediction n-ary relational facts knowledge graph relatedness
DOI10.1109/TKDE.2021.3073483
收录类别SCI
语种英语
资助项目National KeyResearch and Development Program of China[2016YFB1000902] ; Beijing Academy of ArtificialIntelligence (BAAI)[BAAI2019ZD0306] ; Lenovo-CAS Joint Lab Youth Scientist Project ; National Natural Science Foundation of China[62002341] ; National Natural Science Foundation of China[U1911401] ; National Natural Science Foundation of China[61772501] ; National Natural Science Foundation of China[U1836206] ; National Natural Science Foundation of China[91646120] ; GFKJ Innovation Program
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000895445500049
出版者IEEE COMPUTER SOC
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20188
专题中国科学院计算技术研究所期刊论文
通讯作者Guan, Saiping
作者单位1.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing 100864, Peoples R China
推荐引用方式
GB/T 7714
Guan, Saiping,Jin, Xiaolong,Guo, Jiafeng,et al. Link Prediction on N-ary Relational Data Based on Relatedness Evaluation[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2023,35(1):672-685.
APA Guan, Saiping,Jin, Xiaolong,Guo, Jiafeng,Wang, Yuanzhuo None,&Cheng, Xueqi.(2023).Link Prediction on N-ary Relational Data Based on Relatedness Evaluation.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,35(1),672-685.
MLA Guan, Saiping,et al."Link Prediction on N-ary Relational Data Based on Relatedness Evaluation".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 35.1(2023):672-685.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guan, Saiping]的文章
[Jin, Xiaolong]的文章
[Guo, Jiafeng]的文章
百度学术
百度学术中相似的文章
[Guan, Saiping]的文章
[Jin, Xiaolong]的文章
[Guo, Jiafeng]的文章
必应学术
必应学术中相似的文章
[Guan, Saiping]的文章
[Jin, Xiaolong]的文章
[Guo, Jiafeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。