CSpace  > 中国科学院计算技术研究所期刊论文
Single-frequency and accurate phase unwrapping method using deep learning
Wang, Suqin1; Chen, Taiqin1; Shi, Min1; Zhu, Dengmin2,3; Wang, Jia1
2023-03-01
发表期刊OPTICS AND LASERS IN ENGINEERING
ISSN0143-8166
卷号162页码:10
摘要Phase unwrapping is an important part of fringe projection profilometry(FPP), which greatly affects the efficiency and accuracy of reconstruction. Phase unwrapping methods with deep learning achieve single-frequency phase unwrapping without additional cameras. However, existing methods have low accuracy in the real complex scene, and can not process data whose resolution is greater than the resolution of training data. This paper introduces a neural convolutional network named as VRNet which achieves accurate and single-frequency phase unwrapping without extra cameras. VRNet with encoder-decoder structure gets multi-scale feature maps through feeding the wrapped phase map into the encoder, then fuses the feature maps recursively by using the proposed feature fusion module to accomplish precise prediction. In order to further improve the accuracy of phase unwrapping, this paper presents a phase correction method based on the distribution characteristics of the absolute phase. The method divides the cross-section of the absolute phase map into several curves and identifies a misclassified pixel by comparing its absolute phase value with the value of neighboring curves. In contrast to existing methods, the method is row-independent and does not require segmentation of image. Moreover, this paper accomplishes the prediction of high-resolution data through the phase stitching strategy and fine-tuning the phase correction method. Extensive experiments show that the proposed method is able to achieve high-accuracy and single -frequency phase unwrapping in real scenes which consist of at least one complex object, and is also effective for wrapped phase maps with a resolution larger than the training data.
关键词Fringe projection profilometry Phase unwrapping Deep learning Semantic segmentation
DOI10.1016/j.optlaseng.2022.107409
收录类别SCI
语种英语
资助项目National Key Research and Develop-ment Program of China ; National Natural Science Foundation of China ; [2020YFB1710400] ; [61972379]
WOS研究方向Optics
WOS类目Optics
WOS记录号WOS:000898786100003
出版者ELSEVIER SCI LTD
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20169
专题中国科学院计算技术研究所期刊论文
通讯作者Shi, Min
作者单位1.North China Elect Power Univ, Sch Control & Comp Engn, 2 Beinong Rd, Beijing 102206, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Chinese Acad Sci Taicang Inst Informat Technol, Taicang 215400, Peoples R China
推荐引用方式
GB/T 7714
Wang, Suqin,Chen, Taiqin,Shi, Min,et al. Single-frequency and accurate phase unwrapping method using deep learning[J]. OPTICS AND LASERS IN ENGINEERING,2023,162:10.
APA Wang, Suqin,Chen, Taiqin,Shi, Min,Zhu, Dengmin,&Wang, Jia.(2023).Single-frequency and accurate phase unwrapping method using deep learning.OPTICS AND LASERS IN ENGINEERING,162,10.
MLA Wang, Suqin,et al."Single-frequency and accurate phase unwrapping method using deep learning".OPTICS AND LASERS IN ENGINEERING 162(2023):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Suqin]的文章
[Chen, Taiqin]的文章
[Shi, Min]的文章
百度学术
百度学术中相似的文章
[Wang, Suqin]的文章
[Chen, Taiqin]的文章
[Shi, Min]的文章
必应学术
必应学术中相似的文章
[Wang, Suqin]的文章
[Chen, Taiqin]的文章
[Shi, Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。