CSpace  > 中国科学院计算技术研究所期刊论文
CMOS-GAN: Semi-Supervised Generative Adversarial Model for Cross-Modality Face Image Synthesis
Yu, Shikang1,2; Han, Hu1,2,3; Shan, Shiguang1,2,3; Chen, Xilin1,2
2023
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号32页码:144-158
摘要Cross-modality face image synthesis such as sketch-to-photo, NIR-to-RGB, and RGB-to-depth has wide applications in face recognition, face animation, and digital entertainment. Conventional cross-modality synthesis methods usually require paired training data, i.e., each subject has images of both modalities. However, paired data can be difficult to acquire, while unpaired data commonly exist. In this paper, we propose a novel semi-supervised cross-modality synthesis method (namely CMOS-GAN), which can leverage both paired and unpaired face images to learn a robust cross-modality synthesis model. Specifically, CMOS-GAN uses a generator of encoder-decoder architecture for new modality synthesis. We leverage pixel-wise loss, adversarial loss, classification loss, and face feature loss to exploit the information from both paired multi-modality face images and unpaired face images for model learning. In addition, since we expect the synthetic new modality can also be helpful for improving face recognition accuracy, we further use a modified triplet loss to retain the discriminative features of the subject in the synthetic modality. Experiments on three cross-modality face synthesis tasks (NIR-to-VIS, RGB-to-depth, and sketch-to-photo) show the effectiveness of the proposed approach compared with the state-of-the-art. In addition, we also collect a large-scale RGB-D dataset (VIPL-MumoFace-3K) for the RGB-to-depth synthesis task. We plan to open-source our code and VIPL-MumoFace-3K dataset to the community (https://github.com/skgyu/CMOS-GAN).
关键词Cross-modality synthesis semi-supervised synthesis cross-modality face recognition generative adversarial networks
DOI10.1109/TIP.2022.3226413
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFA0700804] ; National Natural Science Foundation of China[61732004] ; National Natural Science Foundation of China[62176249]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000902111900011
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20152
专题中国科学院计算技术研究所期刊论文
通讯作者Han, Hu
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Peng Cheng Lab, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Yu, Shikang,Han, Hu,Shan, Shiguang,et al. CMOS-GAN: Semi-Supervised Generative Adversarial Model for Cross-Modality Face Image Synthesis[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2023,32:144-158.
APA Yu, Shikang,Han, Hu,Shan, Shiguang,&Chen, Xilin.(2023).CMOS-GAN: Semi-Supervised Generative Adversarial Model for Cross-Modality Face Image Synthesis.IEEE TRANSACTIONS ON IMAGE PROCESSING,32,144-158.
MLA Yu, Shikang,et al."CMOS-GAN: Semi-Supervised Generative Adversarial Model for Cross-Modality Face Image Synthesis".IEEE TRANSACTIONS ON IMAGE PROCESSING 32(2023):144-158.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Shikang]的文章
[Han, Hu]的文章
[Shan, Shiguang]的文章
百度学术
百度学术中相似的文章
[Yu, Shikang]的文章
[Han, Hu]的文章
[Shan, Shiguang]的文章
必应学术
必应学术中相似的文章
[Yu, Shikang]的文章
[Han, Hu]的文章
[Shan, Shiguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。