Institute of Computing Technology, Chinese Academy IR
| Multiscale Mesh Deformation Component Analysis With Attention-Based Autoencoders | |
| Yang, Jie1,2; Gao, Lin1,2; Tan, Qingyang3; Huang, Yi-Hua1,2; Xia, Shihong1,2; Lai, Yu-Kun4 | |
| 2023-02-01 | |
| 发表期刊 | IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
![]() |
| ISSN | 1077-2626 |
| 卷号 | 29期号:2页码:1301-1317 |
| 摘要 | Deformation component analysis is a fundamental problem in geometry processing and shape understanding. Existing approaches mainly extract deformation components in local regions at a similar scale while deformations of real-world objects are usually distributed in a multi-scale manner. In this article, we propose a novel method to exact multiscale deformation components automatically with a stacked attention-based autoencoder. The attention mechanism is designed to learn to softly weight multi-scale deformation components in active deformation regions, and the stacked attention-based autoencoder is learned to represent the deformation components at different scales. Quantitative and qualitative evaluations show that our method outperforms state-of-the-art methods. Furthermore, with the multiscale deformation components extracted by our method, the user can edit shapes in a coarse-to-fine fashion which facilitates effective modeling of new shapes. |
| 关键词 | Multi-scale shape analysis attention mechanism sparse regularization stacked auto-encoder |
| DOI | 10.1109/TVCG.2021.3112526 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | National Natural Science Foundation of China[62061136007] ; National Natural Science Foundation of China[61872440] ; Beijing Municipal Natural Science Foundation[L182016] ; Science and Technology Service Network Initiative ; Chinese Academy of Sciences[KFJ-STS-QYZD-2021-11-001] ; Royal Society Newton Advanced Fellowship[NAF\R2\192151] ; Youth Innovation Promotion Association CAS ; Zhejiang Lab[2021KE0AB06] |
| WOS研究方向 | Computer Science |
| WOS类目 | Computer Science, Software Engineering |
| WOS记录号 | WOS:000906475100002 |
| 出版者 | IEEE COMPUTER SOC |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.204/handle/2XEOYT63/20066 |
| 专题 | 中国科学院计算技术研究所期刊论文 |
| 通讯作者 | Gao, Lin |
| 作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100864, Peoples R China 3.Univ Maryland, College Pk, MD 20742 USA 4.Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF10 3AT, Wales |
| 推荐引用方式 GB/T 7714 | Yang, Jie,Gao, Lin,Tan, Qingyang,et al. Multiscale Mesh Deformation Component Analysis With Attention-Based Autoencoders[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2023,29(2):1301-1317. |
| APA | Yang, Jie,Gao, Lin,Tan, Qingyang,Huang, Yi-Hua,Xia, Shihong,&Lai, Yu-Kun.(2023).Multiscale Mesh Deformation Component Analysis With Attention-Based Autoencoders.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,29(2),1301-1317. |
| MLA | Yang, Jie,et al."Multiscale Mesh Deformation Component Analysis With Attention-Based Autoencoders".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 29.2(2023):1301-1317. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论