CSpace  > 中国科学院计算技术研究所期刊论文
Motif-GCNs With Local and Non-Local Temporal Blocks for Skeleton-Based Action Recognition
Wen, Yu-Hui1; Gao, Lin2,3; Fu, Hongbo4; Zhang, Fang-Lue5; Xia, Shihong2,3; Liu, Yong-Jin1
2023-02-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号45期号:2页码:2009-2023
摘要Recent works have achieved remarkable performance for action recognition with human skeletal data by utilizing graph convolutional models. Existing models mainly focus on developing graph convolutional operations to encode structural properties of a skeletal graph, whose topology is manually predefined and fixed over all action samples. Some recent works further take sample-dependent relationships among joints into consideration. However, the complex relationships between arbitrary pairwise joints are difficult to learn and the temporal features between frames are not fully exploited by simply using traditional convolutions with small local kernels. In this paper, we propose a motif-based graph convolution method, which makes use of sample-dependent latent relations among non-physically connected joints to impose a high-order locality and assigns different semantic roles to physical neighbors of a joint to encode hierarchical structures. Furthermore, we propose a sparsity-promoting loss function to learn a sparse motif adjacency matrix for latent dependencies in non-physical connections. For extracting effective temporal information, we propose an efficient local temporal block. It adopts partial dense connections to reuse temporal features in local time windows, and enrich a variety of information flow by gradient combination. In addition, we introduce a non-local temporal block to capture global dependencies among frames. Our model can capture local and non-local relationships both spatially and temporally, by integrating the local and non-local temporal blocks into the sparse motif-based graph convolutional networks (SMotif-GCNs). Comprehensive experiments on four large-scale datasets show that our model outperforms the state-of-the-art methods. Our code is publicly available at https://github.com/wenyh1616/SAMotif-GCN.
关键词Skeleton Feature extraction Joints Convolutional codes Topology Training Sparse matrices Action recognition graph convolutional neural networks spatio-temporal attention non-local block skeleton sequence
DOI10.1109/TPAMI.2022.3170511
收录类别SCI
语种英语
资助项目National Key Research and Development Plan[2021YFF0307702] ; China Postdoctoral Sci-ence Foundation[2021M701891] ; Tsinghua University Initiative Scientific Research Program ; National Natural Science Foundation of China[61725204] ; National Natural Science Foundation of China[61872440] ; Beijing Munic-ipal Natural Science Foundation for Distinguished Young Scholars[JQ21013] ; Youth Innovation Promotion Association CAS, Marsden Fund Council[MFP-20-VUW-180]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000912386000044
出版者IEEE COMPUTER SOC
引用统计
被引频次:30[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20042
专题中国科学院计算技术研究所期刊论文
通讯作者Gao, Lin; Liu, Yong-Jin
作者单位1.Tsinghua Univ, Dept Comp Sci & Technol, BNRist, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
4.City Univ Hong Kong, Sch Creat Media, Hong Kong, Peoples R China
5.Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington 6012, New Zealand
推荐引用方式
GB/T 7714
Wen, Yu-Hui,Gao, Lin,Fu, Hongbo,et al. Motif-GCNs With Local and Non-Local Temporal Blocks for Skeleton-Based Action Recognition[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2023,45(2):2009-2023.
APA Wen, Yu-Hui,Gao, Lin,Fu, Hongbo,Zhang, Fang-Lue,Xia, Shihong,&Liu, Yong-Jin.(2023).Motif-GCNs With Local and Non-Local Temporal Blocks for Skeleton-Based Action Recognition.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,45(2),2009-2023.
MLA Wen, Yu-Hui,et al."Motif-GCNs With Local and Non-Local Temporal Blocks for Skeleton-Based Action Recognition".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 45.2(2023):2009-2023.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wen, Yu-Hui]的文章
[Gao, Lin]的文章
[Fu, Hongbo]的文章
百度学术
百度学术中相似的文章
[Wen, Yu-Hui]的文章
[Gao, Lin]的文章
[Fu, Hongbo]的文章
必应学术
必应学术中相似的文章
[Wen, Yu-Hui]的文章
[Gao, Lin]的文章
[Fu, Hongbo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。