CSpace  > 中国科学院计算技术研究所期刊论文
Optimus: An Operator Fusion Framework for Deep Neural Networks
Cai, Xuyi1,2; Wang, Ying3,4; Zhang, Lei1
2023
发表期刊ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS
ISSN1539-9087
卷号22期号:1页码:26
摘要The reduction of neural parameters and operations for the applications on embedded and IoT platforms in current deep neural network (DNN) architectures has received increasing attention. Relatively, the intermediate feature maps of such lightweight neural networks begin to grow and usually outsize the on-chip memory as the new bottleneck, which introduces considerable power-consuming off-chip memory accesses. To reduce the feature-induced memory accesses, operator fusion has been proposed to parallelize the execution of multiple convolutional layers and shown significant reduction of off-chip memory accesses. However, how to fuse the neural operators is still a challenging issue that heavily depends on both the neural network (NN) topology and the specific DNN accelerator configuration. In this work, we observed prior operator fusion approaches fail to guarantee memory-level optimality as they search in the constrained operator fusion design space. Considering the complexity of the NN topologies and the constrained resources of the DNN accelerators, we develop a novel operator fusion framework, Optimus. Optimus includes an accurate memory cost model dedicated to the scheduler to evaluate the potential operator-fusion schemes and a directed acyclic graph-based operator fusion algorithm for both off-line and on-line workload deployment scenarios, which altogether generates high-efficiency operator-fusion solutions for arbitrary networkmodels running on DNN accelerators. The experimental results show that Optimus reduces 17-75% off-chip memory accesses and obtains 1.86x-3.66x energy efficiency on state-of-the-art DNN workloads when compared to the baselines and brings significant power-efficiency boost to the DNN accelerators of different architectures and dataflows.
关键词Neural network embedded processor memory layer fusion
DOI10.1145/3520142
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:000908419900001
出版者ASSOC COMPUTING MACHINERY
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20030
专题中国科学院计算技术研究所期刊论文
通讯作者Wang, Ying
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Chinese Acad Sci, Zhejiang Lab, Beijing, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Cai, Xuyi,Wang, Ying,Zhang, Lei. Optimus: An Operator Fusion Framework for Deep Neural Networks[J]. ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS,2023,22(1):26.
APA Cai, Xuyi,Wang, Ying,&Zhang, Lei.(2023).Optimus: An Operator Fusion Framework for Deep Neural Networks.ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS,22(1),26.
MLA Cai, Xuyi,et al."Optimus: An Operator Fusion Framework for Deep Neural Networks".ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS 22.1(2023):26.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cai, Xuyi]的文章
[Wang, Ying]的文章
[Zhang, Lei]的文章
百度学术
百度学术中相似的文章
[Cai, Xuyi]的文章
[Wang, Ying]的文章
[Zhang, Lei]的文章
必应学术
必应学术中相似的文章
[Cai, Xuyi]的文章
[Wang, Ying]的文章
[Zhang, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。