CSpace  > 中国科学院计算技术研究所期刊论文
Dynamic global structure enhanced multi-channel graph neural network for session-based recommendation
Zhu, Xiaofei1; Tang, Gu1; Wang, Pengfei2; Li, Chenliang3; Guo, Jiafeng4; Dietze, Stefan5,6
2023-05-01
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号624页码:324-343
摘要Session-based recommendation is a challenging task, which aims at making recommenda-tion for anonymous users based on in-session data, i.e. short-term interaction data. Most session-based recommendation methods only model user's preferences with the current session sequence, which ignore rich information from a global perspective. Meanwhile, previous works usually apply GNN to capture the transformation relationship between items, however the graph used in GNN is built through a static mode, which may introduce noise to the graph structure if user's preferences shift. In this paper, we propose a novel method called Dynamic Global Structure Enhanced Multi-channel Graph Neural Network (DGS-MGNN) to learn accurate representations of items from multiple perspectives. In DGS-MGNN, we propose a novel GNN model named Multi-channel Graph Neural Network to generate the local, global and consensus graphs dynamically and learn more informative representations of items based on the corresponding graph. Meanwhile, in order to reduce the noise information within sessions, we utilize the graph structure to assist the attention mechanism to filter noisy information within each session, so as to gen-erate an accurate intention representation for the user. Finally, combined with a repeat and explore module, a more accurate prediction probability distribution is generated. We con-duct extensive experiments on three widely used datasets, and the results demonstrate that DGS-MGNN is consistently superior to the state-of-the-art baseline models. (c) 2022 Published by Elsevier Inc.
关键词Recommendation system Session-based recommendation Graph neural network Behavior modeling Attention model Representation learning
DOI10.1016/j.ins.2022.10.025
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62141201] ; Major Project of Science and Technology Research Program of Chongqing Education Commission of China[KJZD-M202201102] ; Federal Ministry of Education and Research[01IS21086]
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000915813400001
出版者ELSEVIER SCIENCE INC
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/20001
专题中国科学院计算技术研究所期刊论文
通讯作者Zhu, Xiaofei
作者单位1.Chongqing Univ Technol, Coll Comp Sci & Engn, Chongqing 400054, Peoples R China
2.Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China
3.Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
5.Leibniz Inst Social Sci, Knowledge Technol Social Sci, D-50667 Cologne, Germany
6.Heinrich Heine Univ Dusseldorf, Inst Comp Sci, D-40225 Dusseldorf, Germany
推荐引用方式
GB/T 7714
Zhu, Xiaofei,Tang, Gu,Wang, Pengfei,et al. Dynamic global structure enhanced multi-channel graph neural network for session-based recommendation[J]. INFORMATION SCIENCES,2023,624:324-343.
APA Zhu, Xiaofei,Tang, Gu,Wang, Pengfei,Li, Chenliang,Guo, Jiafeng,&Dietze, Stefan.(2023).Dynamic global structure enhanced multi-channel graph neural network for session-based recommendation.INFORMATION SCIENCES,624,324-343.
MLA Zhu, Xiaofei,et al."Dynamic global structure enhanced multi-channel graph neural network for session-based recommendation".INFORMATION SCIENCES 624(2023):324-343.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Xiaofei]的文章
[Tang, Gu]的文章
[Wang, Pengfei]的文章
百度学术
百度学术中相似的文章
[Zhu, Xiaofei]的文章
[Tang, Gu]的文章
[Wang, Pengfei]的文章
必应学术
必应学术中相似的文章
[Zhu, Xiaofei]的文章
[Tang, Gu]的文章
[Wang, Pengfei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。