CSpace  > 中国科学院计算技术研究所期刊论文
Exploring the Temporal Consistency of Arbitrary Style Transfer: A Channelwise Perspective
Kong, Xiaoyu1,2; Deng, Yingying3; Tang, Fan4; Dong, Weiming3; Ma, Chongyang5; Chen, Yongyong; He, Zhenyu6,7; Xu, Changsheng3
2023-01-06
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
页码15
摘要Arbitrary image stylization by neural networks has become a popular topic, and video stylization is attracting more attention as an extension of image stylization. However, when image stylization methods are applied to videos, unsatisfactory results that suffer from severe flickering effects appear. In this article, we conducted a detailed and comprehensive analysis of the cause of such flickering effects. Systematic comparisons among typical neural style transfer approaches show that the feature migration modules for state-of-the-art (SOTA) learning systems are ill-conditioned and could lead to a channelwise misalignment between the input content representations and the generated frames. Unlike traditional methods that relieve the misalignment via additional optical flow constraints or regularization modules, we focus on keeping the temporal consistency by aligning each output frame with the input frame. To this end, we propose a simple yet efficient multichannel correlation network (MCCNet), to ensure that output frames are directly aligned with inputs in the hidden feature space while maintaining the desired style patterns. An inner channel similarity loss is adopted to eliminate side effects caused by the absence of nonlinear operations such as softmax for strict alignment. Furthermore, to improve the performance of MCCNet under complex light conditions, we introduce an illumination loss during training. Qualitative and quantitative evaluations demonstrate that MCCNet performs well in arbitrary video and image style transfer tasks.
关键词Correlation Task analysis Optical imaging Integrated optics Lighting Optical fiber networks Image reconstruction Arbitrary stylization channel correlation cross-domain feature migration
DOI10.1109/TNNLS.2022.3230084
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2020AAA0106200] ; National Science Foundation of China[U20B2070] ; National Science Foundation of China[61832016] ; National Science Foundation of China[62102162] ; National Science Foundation of China[62172126] ; National Science Foundation of China[6216063] ; Major Key Project of Peng Cheng Laboratory[PCL2021A03-1] ; Shenzhen Research Council[JCYJ20210324120202006] ; Guangdong Natural Science Foundation[2022A1515010819]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000915636700001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19974
专题中国科学院计算技术研究所期刊论文
通讯作者Tang, Fan
作者单位1.Jilin Univ, Sch Artificial Intelligence, Changchun 130012, Peoples R China
2.Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518073, Peoples R China
3.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
5.Kuaishou Technol, Beijing 100085, Peoples R China
6.Harbin Inst Technol, Dept Comp Sci, Shenzhen 518073, Peoples R China
7.Peng Cheng Lab, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Kong, Xiaoyu,Deng, Yingying,Tang, Fan,et al. Exploring the Temporal Consistency of Arbitrary Style Transfer: A Channelwise Perspective[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2023:15.
APA Kong, Xiaoyu.,Deng, Yingying.,Tang, Fan.,Dong, Weiming.,Ma, Chongyang.,...&Xu, Changsheng.(2023).Exploring the Temporal Consistency of Arbitrary Style Transfer: A Channelwise Perspective.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,15.
MLA Kong, Xiaoyu,et al."Exploring the Temporal Consistency of Arbitrary Style Transfer: A Channelwise Perspective".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2023):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kong, Xiaoyu]的文章
[Deng, Yingying]的文章
[Tang, Fan]的文章
百度学术
百度学术中相似的文章
[Kong, Xiaoyu]的文章
[Deng, Yingying]的文章
[Tang, Fan]的文章
必应学术
必应学术中相似的文章
[Kong, Xiaoyu]的文章
[Deng, Yingying]的文章
[Tang, Fan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。