Institute of Computing Technology, Chinese Academy IR
CIR-Net: Cross-Modality Interaction and Refinement for RGB-D Salient Object Detection | |
Cong, Runmin1,2; Lin, Qinwei1,2; Zhang, Chen1,2; Li, Chongyi3; Cao, Xiaochun4; Huang, Qingming5,6,7; Zhao, Yao1,2 | |
2022 | |
发表期刊 | IEEE TRANSACTIONS ON IMAGE PROCESSING |
ISSN | 1057-7149 |
卷号 | 31页码:6800-6815 |
摘要 | Focusing on the issue of how to effectively capture and utilize cross-modality information in RGB-D salient object detection (SOD) task, we present a convolutional neural network (CNN) model, named CIR-Net, based on the novel cross-modality interaction and refinement. For the cross-modality interaction, 1) a progressive attention guided integration unit is proposed to sufficiently integrate RGB-D feature representations in the encoder stage, and 2) a convergence aggregation structure is proposed, which flows the RGB and depth decoding features into the corresponding RGB-D decoding streams via an importance gated fusion unit in the decoder stage. For the cross-modality refinement, we insert a refinement middleware structure between the encoder and the decoder, in which the RGB, depth, and RGB-D encoder features are further refined by successively using a self-modality attention refinement unit and a cross-modality weighting refinement unit. At last, with the gradually refined features, we predict the saliency map in the decoder stage. Extensive experiments on six popular RGB-D SOD benchmarks demonstrate that our network outperforms the state-of-the-art saliency detectors both qualitatively and quantitatively. The code and results can be found from the link of https://rmcong.github.io/proj_CIRNet.html. |
关键词 | Decoding Task analysis Periodic structures Middleware Logic gates Electronic mail Object detection Salient object detection RGB-D images cross-modality attention cross-modality interaction |
DOI | 10.1109/TIP.2022.3216198 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2021ZD0112100] ; Beijing Nova Program[Z201100006820016] ; National Natural Science Foundation of China[62002014] ; National Natural Science Foundation of China[U1936212] ; National Natural Science Foundation of China[62120106009] ; National Natural Science Foundation of China[U21B2038] ; National Natural Science Foundation of China[61931008] ; Beijing Natural Science Foundation[4222013] ; China Association for Science and Technology[2020QNRC001] ; CAAI-Huawei MindSpore Open Fund ; Fundamental Research Funds for the Central Universities[2022JBMC002] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000875886800009 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/19930 |
专题 | 中国科学院计算技术研究所期刊论文 |
通讯作者 | Zhang, Chen; Li, Chongyi |
作者单位 | 1.Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China 2.Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China 3.Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore 4.Sun Yat Sen Univ, Sch Cyber Sci & Technol, Shenzhen Campus, Shenzhen 518107, Peoples R China 5.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China 6.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 7.Peng Cheng Lab, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 | Cong, Runmin,Lin, Qinwei,Zhang, Chen,et al. CIR-Net: Cross-Modality Interaction and Refinement for RGB-D Salient Object Detection[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2022,31:6800-6815. |
APA | Cong, Runmin.,Lin, Qinwei.,Zhang, Chen.,Li, Chongyi.,Cao, Xiaochun.,...&Zhao, Yao.(2022).CIR-Net: Cross-Modality Interaction and Refinement for RGB-D Salient Object Detection.IEEE TRANSACTIONS ON IMAGE PROCESSING,31,6800-6815. |
MLA | Cong, Runmin,et al."CIR-Net: Cross-Modality Interaction and Refinement for RGB-D Salient Object Detection".IEEE TRANSACTIONS ON IMAGE PROCESSING 31(2022):6800-6815. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论