CSpace  > 中国科学院计算技术研究所期刊论文
CLC: A Consensus-based Label Correction Approach in Federated Learning
Zeng, Bixiao1,2,3; Yang, Xiaodong1,4; Chen, Yiqiang1,2,3,5; Yu, Hanchao6; Zhang, Yingwei1
2022-10-01
发表期刊ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY
ISSN2157-6904
卷号13期号:5页码:23
摘要Federated learning (FL) is a novel distributed learning framework where multiple participants collaboratively train a global model without sharing any raw data to preserve privacy. However, data quality may vary among the participants, the most typical of which is label noise. The incorrect label would significantly damage the performance of the global model. In FL, the inaccessibility of raw data makes this issue more challenging. Previously published studies are limited to using a task-specific benchmark-trained model to evaluate the relevance between the benchmark dataset in the server and the local one on the participants' side. However, such approaches have failed to exploit the cooperative nature of FL itself and are not practical. This paper proposes a Consensus-based Label Correction approach (CLC) in FL, which tries to correct the noisy labels using the developed consensus method among the FL participants. The consensus-defined class-wise information is used to identify the noisy labels and correct them with pseudo-labels. Extensive experiments are conducted on several public datasets in various settings. The experimental results prove the advantage over the state-of-art methods.
关键词Federated learning data evaluation consensus mechanism
DOI10.1145/3519311
收录类别SCI
语种英语
资助项目National Key Research and Development Plan of China[2020YFC2007104] ; National Natural Science Foundation of China[61972383] ; Science and Technology Service Network Initiative, Chinese Academy of Sciences[KFJ-STS-QYZD-2021-11-001] ; Beijing Municipal Science & Technology Commission[Z211100002121171] ; Jinan ST Bureau[2020GXRC030]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:000877952100007
出版者ASSOC COMPUTING MACHINERY
引用统计
被引频次:13[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19909
专题中国科学院计算技术研究所期刊论文
通讯作者Chen, Yiqiang
作者单位1.Chinese Acad Sci, Inst Comp Technol, 6 Kexueyuan South Rd, Beijing, Peoples R China
2.Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing, Peoples R China
3.Peng Cheng Lab, Xingke 1st St, Shenzhen, Peoples R China
4.Shandong Acad Intelligent Comp Technol, Jinan, Peoples R China
5.Beijing Key Lab Mobile Comp & Pervas Device, Beijing, Peoples R China
6.Chinese Acad Sci, Bur Frontier Sci & Educ, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zeng, Bixiao,Yang, Xiaodong,Chen, Yiqiang,et al. CLC: A Consensus-based Label Correction Approach in Federated Learning[J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,2022,13(5):23.
APA Zeng, Bixiao,Yang, Xiaodong,Chen, Yiqiang,Yu, Hanchao,&Zhang, Yingwei.(2022).CLC: A Consensus-based Label Correction Approach in Federated Learning.ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,13(5),23.
MLA Zeng, Bixiao,et al."CLC: A Consensus-based Label Correction Approach in Federated Learning".ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 13.5(2022):23.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zeng, Bixiao]的文章
[Yang, Xiaodong]的文章
[Chen, Yiqiang]的文章
百度学术
百度学术中相似的文章
[Zeng, Bixiao]的文章
[Yang, Xiaodong]的文章
[Chen, Yiqiang]的文章
必应学术
必应学术中相似的文章
[Zeng, Bixiao]的文章
[Yang, Xiaodong]的文章
[Chen, Yiqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。