CSpace  > 中国科学院计算技术研究所期刊论文
Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium
Zhao, Chenji1; Xiang, Shun1; Wang, Yuanquan1; Cai, Zhaoxi2; Shen, Jun2; Zhou, Shoujun3; Zhao, Di4; Su, Weihua1; Guo, Shijie1,5; Li, Shuo6
2023-03-15
发表期刊EXPERT SYSTEMS WITH APPLICATIONS
ISSN0957-4174
卷号214页码:9
摘要Accurate, robust and automatic segmentation of the left atrium (LA) in magnetic resonance images (MRI) is of great significance for studying the LA structure and facilitating the diagnosis and treatment of atrial fibrillation. Semi-supervised learning has attracted great attention in medical image segmentation, since it alleviates the heavy burden of annotating training data. In this paper, we propose a context-aware network called CA-Net for semi-supervised LA segmentation from 3D MRI. The information of 3D MRI to be learned is not only the contextual information in each slice, but also the spatial information among different slices of the data, which is not sufficiently exploit by existing methods. In the proposed CA-Net, a Trans-V module is coined from both Transformers and V-Net, which is able to learn contextual information in 3D MRI. In the training processing, the discriminator with attention mechanisms is introduced to calculate an adversarial loss so that a large amount of unlabeled data can be utilized. Experimental results on the Atrial Segmentation Challenge dataset show that the contextual information is helpful to extract more accurate atrial structures, and the proposed CA-Net achieves better performance than some SOTA semi-supervised networks. Our method achieves dice scores of 88.14% and 90.09% in segmentation results when trained with 10% and 20% of labeled data, respectively. Code will be available at: https://github.com/RhythmI/CA-Net-master.
关键词3D MRI Contextual information Image segmentation Semi -supervised learning Transformers
DOI10.1016/j.eswa.2022.119105
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018YFA0704102] ; National Science Foundation of China (NSFC)[61976241] ; National Science Foundation of China (NSFC)[81827805] ; National Science Foundation of China (NSFC)[61871173] ; National Science Foundation of China (NSFC)[91948303] ; Basic Research Project of Shenzhen Science and Technology Innovation Commission[JCYJ20200109114610201] ; Basic Research Project of Shenzhen Science and Technology Innovation Commission[JCYJ20200109114812361] ; Shenzhen Engineering Laboratory for Interventional Key Technology of Diagnosis and Treatment with Surgical Robot ; Tianjin Science and Technology Planning Project[19ZXJRGX00080]
WOS研究方向Computer Science ; Engineering ; Operations Research & Management Science
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science
WOS记录号WOS:000883786000011
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:41[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19851
专题中国科学院计算技术研究所期刊论文
通讯作者Wang, Yuanquan; Zhou, Shoujun
作者单位1.Hebei Univ Technol HeBUT, Sch Artificial Intelligence, Tianjin 300401, Peoples R China
2.Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Radiol, Guangzhou 510120, Peoples R China
3.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
5.HeBUT, Hebei Key Lab Robot Percept & Human Robot Interact, Tianjin 300401, Peoples R China
6.Western Univ, Dept Med Imaging, DIG London, London, ON N6A 4V2, Canada
推荐引用方式
GB/T 7714
Zhao, Chenji,Xiang, Shun,Wang, Yuanquan,et al. Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium[J]. EXPERT SYSTEMS WITH APPLICATIONS,2023,214:9.
APA Zhao, Chenji.,Xiang, Shun.,Wang, Yuanquan.,Cai, Zhaoxi.,Shen, Jun.,...&Li, Shuo.(2023).Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium.EXPERT SYSTEMS WITH APPLICATIONS,214,9.
MLA Zhao, Chenji,et al."Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium".EXPERT SYSTEMS WITH APPLICATIONS 214(2023):9.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Chenji]的文章
[Xiang, Shun]的文章
[Wang, Yuanquan]的文章
百度学术
百度学术中相似的文章
[Zhao, Chenji]的文章
[Xiang, Shun]的文章
[Wang, Yuanquan]的文章
必应学术
必应学术中相似的文章
[Zhao, Chenji]的文章
[Xiang, Shun]的文章
[Wang, Yuanquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。