CSpace  > 中国科学院计算技术研究所期刊论文
Adaptive Federated Learning With Non-IID Data
Zeng, Yan1,2,3; Mu, Yuankai4; Yuan, Junfeng1; Teng, Siyuan1; Zhang, Jilin1,2,3; Wan, Jian1,2,3; Ren, Yongjian1,2,3; Zhang, Yunquan5
2022-09-30
发表期刊COMPUTER JOURNAL
ISSN0010-4620
页码15
摘要With the widespread use of Internet of things(IoT) devices, it generates an enormous volume of data, and it is a challenge to mine the IoT data value while ensuring security and privacy. Federated learning is a decentralized approach for training data located on edge devices, such as mobile phones and IoT devices, while keeping privacy, efficiency, and security. However, the Non-IID (non-independent and identically distributed) data, always greatly impacts the performance of the global model. In this paper, we propose a FedDynamic algorithm to solve the statistical challenge of federated learning caused by Non-IID. As Non-IID data can lead to significant differences in model parameters between edge devices, we set different weights for different devices during model aggregation to get a high-performance global model. We analyze and exact key indices (local model accuracy, local data quality, and model difference between local models and the global model), which can reflect the quality of the model, and calculate the aggregation weight for edge devices based on the key indices. Furthermore, we dynamically adjust aggregation weight based on accuracy's variety to solve weight staleness during the training process. Experiments on the MNIST, FMNIST, EMNIST, CINIC-10 and CIFAR-10 datasets show that the FedDynamic algorithm has better accuracy and convergence performance, compared to the FedAvg, FedProx and Scaffold algorithms.
关键词Federated Learning Model Aggregation Non-IID
DOI10.1093/comjnl/bxac118
收录类别SCI
语种英语
资助项目Technology Research and Development Program of China[2019YFB2102100] ; National Natural Science Foundation of China[62072146] ; National Natural Science Foundation of China[61972358] ; Key Research and Development Program of Zhejiang Province[2021C03187] ; Key Research and Development Program of Zhejiang Province[2019C03134]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:000862225700001
出版者OXFORD UNIV PRESS
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19815
专题中国科学院计算技术研究所期刊论文
通讯作者Wan, Jian; Ren, Yongjian
作者单位1.Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
2.Minist Educ, Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Peoples R China
3.Zhejiang Engn Res Ctr Data Secur Governance, Hangzhou 310018, Peoples R China
4.Hangzhou Dianzi Univ, HDU ITMO Joint Inst, Hangzhou 310018, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Beijing 100086, Peoples R China
推荐引用方式
GB/T 7714
Zeng, Yan,Mu, Yuankai,Yuan, Junfeng,et al. Adaptive Federated Learning With Non-IID Data[J]. COMPUTER JOURNAL,2022:15.
APA Zeng, Yan.,Mu, Yuankai.,Yuan, Junfeng.,Teng, Siyuan.,Zhang, Jilin.,...&Zhang, Yunquan.(2022).Adaptive Federated Learning With Non-IID Data.COMPUTER JOURNAL,15.
MLA Zeng, Yan,et al."Adaptive Federated Learning With Non-IID Data".COMPUTER JOURNAL (2022):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zeng, Yan]的文章
[Mu, Yuankai]的文章
[Yuan, Junfeng]的文章
百度学术
百度学术中相似的文章
[Zeng, Yan]的文章
[Mu, Yuankai]的文章
[Yuan, Junfeng]的文章
必应学术
必应学术中相似的文章
[Zeng, Yan]的文章
[Mu, Yuankai]的文章
[Yuan, Junfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。