CSpace  > 中国科学院计算技术研究所期刊论文
FlexPDA: A Flexible Programming Framework for Deep Learning Accelerators
Liu, Lei1,2; Ma, Xiu1,2; Liu, Hua-Xiao1,2; Li, Guang-Li3,4; Liu, Lei3
2022-10-01
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
卷号37期号:5页码:1200-1220
摘要There are a wide variety of intelligence accelerators with promising performance and energy efficiency, deployed in a broad range of applications such as computer vision and speech recognition. However, programming productivity hinders the deployment of deep learning accelerators. The low-level library invoked in the high-level deep learning framework which supports the end-to-end execution with a given model, is designed to reduce the programming burden on the intelligence accelerators. Unfortunately, it is inflexible for developers to build a network model for every deep learning application, which probably brings unnecessary repetitive implementation. In this paper, a flexible and efficient programming framework for deep learning accelerators, FlexPDA, is proposed, which provides more optimization opportunities than the low-level library and realizes quick transplantation of applications to intelligence accelerators for fast upgrades. We evaluate FlexPDA by using 10 representative operators selected from deep learning algorithms and an end-to-end network. The experimental results validate the effectiveness of FlexPDA, which achieves an end-to-end performance improvement of 1.620x over the low-level library.
关键词deep learning accelerator programming framework domain-specific language
DOI10.1007/s11390-021-1406-9
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFB1003103] ; Natural Science Research Foundation of Jilin Province of China[20190201193JC] ; Fundamental Research Funds for the Central Universities
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:000870734200013
出版者SCIENCE PRESS
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19773
专题中国科学院计算技术研究所期刊论文
通讯作者Liu, Hua-Xiao
作者单位1.Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
2.Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Liu, Lei,Ma, Xiu,Liu, Hua-Xiao,et al. FlexPDA: A Flexible Programming Framework for Deep Learning Accelerators[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2022,37(5):1200-1220.
APA Liu, Lei,Ma, Xiu,Liu, Hua-Xiao,Li, Guang-Li,&Liu, Lei.(2022).FlexPDA: A Flexible Programming Framework for Deep Learning Accelerators.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,37(5),1200-1220.
MLA Liu, Lei,et al."FlexPDA: A Flexible Programming Framework for Deep Learning Accelerators".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 37.5(2022):1200-1220.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Lei]的文章
[Ma, Xiu]的文章
[Liu, Hua-Xiao]的文章
百度学术
百度学术中相似的文章
[Liu, Lei]的文章
[Ma, Xiu]的文章
[Liu, Hua-Xiao]的文章
必应学术
必应学术中相似的文章
[Liu, Lei]的文章
[Ma, Xiu]的文章
[Liu, Hua-Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。